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PREDICTION OF PRESSURE DISTRIBUTIONS ON NONLIFTING AIRFOILS AT..
HIGH SUBSONIC SPEEDS 1

By JOHN R. SPREfTEB andALBEBTA ALKSNE

SUMMARY

Theoretical prtmure diatribwtion.son nonliftino oircwlawarc
airfoih in two%nemwnd“ jikW8 with high eu.i)sonicfre+wtream
ve~oeilyarejound by determining approximate sobutti, throwgh
an iieration process, of an integral equation for tranwnic jlow
proposed ~ Oewatitsch. The integnd equa.tlun 8tema directly
from the 8maU-disturbance theory for tranmnic jlno. Thti
method oj analymk po88e38esthe adoantage of remaining in the
physical, rathr than the lwdograph, txwiublesand can beappltid
to airfoils having curvedsurfs.ca. After diwwh of thederiva-
tion oj the integral egu40n and gwulitative Wpeci%of the 8olu-

ltbn, rew?taoj cal.cdatiuns carried owtfor circulur-arcairfoi% in
jbw8 withjree-8Wam Mach nUmb8r8up @W% are described.
These reSldt9indicate 71W8tof th.$?principal ph+$nomena0b8t7Vt%i

intzzperimenta.18tudie8. Al subcmliixdMach number8, thepre%-
sure didribuiion is ~mmetrical about themidchord position and
the drag is zero. The magnitude oj the prema-e coej%i.enth
jmmd to increue more rapidly with inqewing Mach number
than the PrandtL(3aw4Wrule w& indicate. WL9n the OTW.CUJ
Mach number G emeeded, comprtxwiun 8h4ck8occur, the jore-
and-ajt qimmet$y of theprewure dtibibuthn I%h8t, and tlk?ai.r-
joil experiencesa dragjorce. Ae the Mach number ie iacremwd
jurdier, the 8hock wave becoma of greater intewity and move4
rearward along the chord, therebyproducing a rapid incrtxwe in
the magnitude oj the pressure drag cm@i%mt. At Mach num-
ber8 clo8e i%unity, the vuriuti.on of the prest?ure, local Mach
number, and drag conjonns, within the limitations of tnmaonic
omti pen!urbation th+mry,to the known trend8 a880ciatedwith
the Mach number freeze. Some comparimw with qwrhnenta.?
rewlk are al.80i7wl&.

The solutiiw are obtuhxi wing an iteration proce438which
di$ers jrom b cla.ssiia.lm+?thoii%in that the quadratic nature
oj i!haintegral equation is recogniazi. If the i?eration cahdu-
tti are start-d w&w the linear-t.lw~ solution, iti88h0wn that
tlw retentian of the quadraticjeature hm the interesting e$ect oj
forbidding 8?wck-fre8eupercriiiad 8e#mhro% 801utti. In
ord8r to obtain 8olutiorwfor eupercritic.alMach number8, d ia
nece88ary to 8tart the iteration cahu.?dtti with a velocity or
premura di@rihutbn which contains a compression8hock. When
thti is done, ii h fownd that tk+siteration procedure cunverg~ to
a de$nti result.

INTRODUCTION

The theoretical problem of tmnsonic flow about thin
wings has been discussed by numerous authora in recent
years. Since the bssic equations are nonlinem and of mixed
type, the difiicultiea are great, and progress has been made
only through expenditure of c-onsidarable effort. At first,
only the btic equations and the &nilari@ rules were estab-
lished. (See refs. 1 through 12.) More recently, a small

number of actual solutions have been determined. At the
premnt time, the most complete theoretical results are those
of Guderley and Yoshihara, Viieenti and Wagoner, Cole, and
Trii (refs. 13 through 18) for the flow about wedge air-
foils at both subsonic and supersonic speeds. These were
all obtained by transforming the equations to hodograph
variablea w-hereby the differential equation becomes linear
although still of mixed type. Superposition of solutions is
then possible, but the boundary conditions generally become
very complicated. It is because of the latter difficulty that
all the solutions mentioned above are for wedge sections.
A further disadvantage of the hodograph method is that
it is deii.nitdy restricted to two-dimensional floivs, there
being no known tmmsformation which linearizes the equa-
tion for three-dimausional impressible flows.

If the hodograph transformation is not introduced, there
are available no direct methods of solution. However,
various iteration methods have been wed ti study flows
with high subsonic free-stream velocities. (See ref. 19 for
a r&um6.) Ahnost all them amount for the compressibility
effects by source distributions throughout the flow field and
start with either the solution for incompressible flow or for
linearized compressible flow as the first approximation. A
seoond approximation is calculated from the first and so on.
It vm.snot found possible, how-ever, to iterate starting with
a typical shock-free subsonic flow solution and obtain a

typical transenic flow field in which the supersonic region
ends with a ghock.

Oswatitmh has presented another method in references
20 and 21 for determining the transonic pressure distribution
on thin airfoils in flows with subsonic free-stream velocity.
The analysis is carried-out in the physical rather than the
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hodograph variables, and leads to a nonlinear integral equa-
tion in which the unknown velocity appeam outside EMwell
as inside the integral. Oswatitsch-fids approximate solu-
tions not by iteration, but by introducing various functions
containing undetermined parametem into the integral equa-
tion and by determiningg the pararnetem m that the integral
equation is satisfied at a small number of points on the air-
foil. The method is applied to determine the pree dis-
tribution on circular-arc and NACA symmetrical ‘four@git
airfoils. The results show certain characteristicsof trtinic
flow such as the appearance of shock waves and theirrearward
movement across the chord with increasing Mach number.
It is disconcerting, however, that the method fails to give
proper results at high subsonic Mach numbers (greater than
about 0.8S for 6-percen&thick circular-arc sections), pro-
vides u multiplicity of-solutions at supercritical Mach num-
bem, and permits the integral equation to be satisfied at
only a very limited number of points.

The present work is based on the integral equation of
Oswatitsch but an iteration process is used to obtain approx-
imate solutions. This procedure permits the integral equa-
tion to be satishl at a much larger number of points than
in the original method of Oswatitechj gives approximate
solutions at all Mach numbers up to unity, and appears to
avoid any mnltiplici~ of solutions. The method is applied
to determine the theoretical pressure distribution” on sym-
metrical circular-arc airfoils at zero angle of attack. Except
for phenomena that are primarily of viscous origin, such as
boundary-layer separation, etc., these results exhibit most
of the experimentally observed fe.aturesof transonic flows.

Attention is also called ti reference 22 by Gullstrand, an
associate of Oswatitsch, in which tmmsonic flows about thin
air foils are investigated by still another extension of Oswa-
titsch’s integral-equation theory. Gullstrand sought to
determine approximate solutions by iteration, although his
procedure diilem considerably from that descriied herein.
His method, however, succeeded in determiningg solutions
only when the Mach number was less than about 0.90 for
6-percenMhick sections. Results were given.for the pressure
distribution at sonic speed in a second paper by @llstrand
(ref. 23), but they were obtained by introducing a new and
more complicated integral equation than that of Oswathch
used herein. In wmtrast to the present analysis in which
the entire solution is obtained horn the integral equation,
Gullstmnd uses the integral equation to deter@ne only the
solution for the forward pmt of the ‘airfoil and uses the
method of characteristics to complete the “solution for the
rear of the airfoil. Further work of Gullsiirandis premnbd
in references 24 and 25.

A list of symbols is contained in Appendix A.

BASIC EQUATIONS

The basic equations necessary for the discussion of inviscid
transonic flow consist of a set of partial differential equations
relating the veIocity components and their gradients at every
point, together with the auxilimy relation giving the veloci~
jump through a shock wave For thin airfoils inclined at
zero or small angles of attack, the differential equations can
be simplifiedby assuming that the shock wavea are sufEcient-

ly -weakthat the flow is irrotational and isentrol)ic. therebv
permitting the introduction of a velocity poten&d ‘o. Th~
quasi-linear partial diilerential equation satisfied by @ can
be expressed in the form

(a’–@=’) @=+ (a’–@j) @w+ (a’–%’) @=–

2@z@,@=,–2@#@’@n– 2@,@=@==o (1)

where the subscript notation is used to indicate differentiation
and a is the local speed of.sound given by the relation

(2)

In this latter equation U. and a. are, respectively, the froo-
stream velocity and the speed of sound in the free stream,
and Y is the ratio of specific heats (for air, y= 1.4).

It is convenient to introduce the perturbation velocity
potential q, where

(0= – u&+@ (3)

If it is assumed that all perturbation velocities and pertur-
bation vcdocity gradienta (represented by first and second
derivatives, respectively, of p) are small and that only the
fhw%orderterms in small quantities need be retained, equa-
tion (1) simpIi&s to the welI-lmown Prandtl-G1auert equa-
tion of linear theory

,(1–M;)p=+ $0,,+ $9.,=0 (4)

where the free-stream velocity is directed along the positivo
x axis as shown in figure 1 and where MO= UO/aOis the Mach
number of the free strerun. It is well known that equation
(4) leads to useful results in the study of subsonic and super-
sonic flow about thin wings and slender bodies but that it is
incapable, in general, of treating transonic floes. The failure
of linear theory in the @ansonic range is evidenced by the
calculated values of p. growing to such magnitude that they
can no longer be regarded as small quantities when compared
with u.. ‘

z .: .1.

t
U.

“%

FIQUZDl.—Viewof wingandcmordinatosystam.



THEORETICAL PREDICTION OF PRESSURE DISTRDWTIONS

Second-order theory for thin wings would involve solution
of the equation

[
7+1

0 –MO’9 $%+$%+P**=LG’ -~; %%?+7+ %&’.+%)+

(5)

(Seo ref. 26, p. 140.) Actually, we are interested in retaining
higher-order terms only to the extent that is necessary to
Wow the study of tmnsonic flow. Examination of the known
properties of tmnsonic flow fields indicates that the &et
term on the right can often become of importance and should
bc retained. It is assumed in the smalldisturbance theory
of transonic flow (refs. 1 through 25), however, that the re-
mainder of the terms on the right can be safely disregarded.
The simplified equation is

*7’+1
(1–Me’) %r+$%+%.=illo -u; Wfzz=kwzz (6)

whore

(0

As a result of minor diiferencea in the perturbation analysis,
recent papers have used at least three other expressions for
k. This point will be discussed further at the conclusion of
the present section.

Equotion (6) is valid only in regions where the necessary
derivative exist and are continuous. Since these conditions
do not hold where shockwaves occur, an additional equation
is needed for the transition through the shock. The neces-
sary equation is provided by the classical relation
shock polar (e. g., ref. 26, p. 108).

Ot+a)b’=(a=-aby ~
&ilb-a*

— aa=—’ilaa+a+
7+1

for the

(8)

where Z, ;, and Z refer to Cartesian velocity components
with ii being parallel to the flow direction ahead of the shock,
the subscripts a and 6 refer ta conditions ahead of and behind
the shock, and a* is the critical sound velocity, which can be
repressed in terms of U’. and M, as follows:

~*

v.= 4
;~+M3(;+1) (9)

The appropriate simplified equation is obtained from equa-
tion (8) by resolving the velocities into components parallel
to the axca of the coordinate system and carrying out a small-
pmturbation analysis analogous to that pat-formed in the
derivation of equation (6). In this way, the following re-
lation is found between the perturbation velocity components
on the two sides of the shock wave:

(1–~q (’%-%)’+ (%–d’+(~a-~b)’

()

=M2 ‘r+l %+”b

()
— ~ (%–uJ’=k ‘+ (~–U#

U.

(lo)
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where u, o, and w are the perturbation velocity components
parallel to the z, y, and z axes. This equation corr~onds
to the shock-polar curve for shock waves of small strength
inclined at any angle between that of normal shock waves
and that of the Mach lines. On either side of the shock
wave, the perturbation velocity components are related to
the perturbation velocity potential in the usual manner

(11)

In addition to satisfying the differential equation and the
shock-wave equation, the perturbation potential must pro-
vide flows compatible with the following physical require-
ments: (a) the perturbation velocities must vanish far
ahead of the wing and (b) the flow must be tangential to the
wing surface. Therefore, the following boundary conditions
are to be specitled for the perturbation potential:

at~=—~

(%)0=(30=(%)0=0(12)

at the wing surface W

.
()

1 ap bz

z z w=%
(13)

where i3Z/i3xis the local slope of the wing surface in the z
direction. Furthermore, it is consistent with the assumption
of small disturbances to satisfy the second boundary condi-
tion on the two sides of the zy plane rather than on the actual
wing surface. Equation (13) thus becomes

w-herethe shape of the wing profile is given by

z ()Xy—=zf~;c (15)

In addition, it is presumed necessary to prescribe that the
direct influence of a disturbance in the supemonic region
proceeds only in the downstream direction and that the Kutta
condition applies whenever the flow velocity at the trailing
edge is subsonic.

Upon solving the above bound~-value problem for the
potential, one may determine the pressure coeilicient for
planar systems by means of the formula

(16)

COMPARISON WITH OTHER STATEMENTS OF THE
TRANSONIGFLOW EQUATIONS

As a result of minor variations in the perturbation analysis,
recent papem have used at least four dithmnt relations fork,
the coefficient of the nonlinem term in the simplified equation
for the perturbation velocity potential. As indicated in the
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preceding paragraphs, straightforward development of
second-order theory leads to the relation

This is sometimes simplified (e. g., refs. 8, 10, and 12) to“&Y+l
u.

m

(17)

by arguing that U. can be set equaI to unity in this term
without any loss in accuracy siuce the righhhand side of
equation (6) is merely an approximation to allow the treat-
ment of transonic flows and rapidly diminkhes in magnitude
as Mo departe from unity. In some treatments (e. g., refk
7 and 23), equation (1) is divided by az and the quotient
l/az in ench term is expanded in a binomial series. When
thisisdone, the weflicient k of the term involving P.PS is

[ 12+(7—l)Mo
k=M: ~

0

(18)

Still another expression for k is used by Oswatitsch in the
papers that form the principal references for the present work.
Two derivations are given, one based on mass-flow consider-
ations (ref. 21) and the other (ref. 20) on simpli&ingJequation
(1) under the assumption of nearly parallel flow to

(l–m%+ Pm+ %=0 (19)

and substituting the following series for the variable coefE-
cient (l —iI&):

1—M02ap
-+ ..”1._~r=I —M.2 ~*—uOax (20)

where M is the local Mach number and a* is the critical
sound velocj~ as defied in equation (9). Comparison of
equations (19) and (20) with equation (6) shows that the
coe%icient k in thisapproximation is

k=A14V
(21)

a*—Uo

A similar situation arisesin the derivation of the simplified
equation for the shock polar. Hwe again the precise form
of the expresion for the coefficient k of equation (10) depends
on the details of the perturbation analysis. The most
important point horn the present point of view is that the
same expression for k is used in both the equation for the
potential and that for the shock polar, namely, equations
(6) and (10). While this point has not always been expliciidy
stated, it is actually a necessmy condition for the existence
of the well-known transonic similarity rules.

The foregoing discussion has been based on equations
obtained by assuming that the local velocities are only
slightly diilerent from the free-stream veloci~. On the
other hand, many of the recent papem on tranmnic flow
about wings and bodies have been based on equations ob-
tained by assuming that the local velocities are only slightly
dMerent tim the critical sound velocity a*. (See refs. 1

through 6, 9, and 13 through 18.) It is shown in reference
12, however, that the pressure, force, and moment results
obtained using thcae equations are identical with those
obtained using the present equations if k is selected as ghwn
in equation (17). These results, however, can be maily
converted to those that would be obtained using any of the
other expressions for k by simply repltiing (7+ 1)/U’o by k
wherever it occurs.

In “orderto facilitat%comparison with previous reaultaand
to achieve an economy of notation, the present analysis is
carried as far as possible without specifying a particular
relation for k. That is, the equations of the analysis and the
reduced parameters with which the results are expressed are
written containing k which may be equatad to any of tho
four stated expressions. However, the actual values of the
pressurecoefficient and Mach number for an airfoil of specific
thiclme.mratio depend on which relation is selectod for k,
The present calculations have been made using the exprcasion
for k given in equation (7). The principal reason for this
choice is that it appears to provide a set of equations, or a
mathematical model, which approximates certain essential
features of transonic flow with superior accuracy. Before
proceeding with discussion of this point, it should be noted
that the four alternative expressions for k are identical for
M.= 1,and all but that given by equation (17) are zmo for
M-o=o,

A significant case where the four relations lead to different
remilts is the prediction of the variation with free-stream
Mach number of the critical pressure coefficient 0,6,, defined
as the value of the pressure coefficient OVat a point where
the local Mach number is unity. It is important that a
remonably good approximation be maintained for the varin-
tion of CP=,with M. because shock waves make their flint
appearance and the airfoil first experiencesa pressure drag
when CPbecomes more negative than CP~rsomewhere on the
airfoil surface. In the present approximation, CPc, corre-
sponds to that value of CPand, hence, of q=, at which equa-
tion (6) changes locally from elliptic to hyperbolic type.
This condition is recognized by the vanishing of tho codicicmt
of *, thue

l–M02—k(P=)ti=0

or, in view of equation (16)

O,cr=–&(d.=-+ (1–M.9 (22)

The exact relation for isentropic flow is (e. g., ref. 27, p. 28)

Cpar=y+ [( )1&+wf~ ‘i-l (23)
0

The variation of C,a with MOhas been computed using the
exact relation and each of the four approximate relations.
The results are presented graphically in figure 2. It may
be seen that a reasonably good approximation for 07,, is
obtairied over a wide Mach number range when k is takm
as Moa(7+ l)/U’O or (1—MO~/(a*— U.), and that a some-
what greater error is incurred when k is equated to MOX[2+
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F’rmnm2.—Variation,approximateand exaot, of ontioal pressure
coeffloientwithfree-streamMaohnumber.

(7– l)M~l/V.. On the other hand, a very poor approxi-
mation results if k is equated to (7+1)/ U..

Similar comparisons can be made for local Mach numbers
M other than unity by noting that the coefhient (l–
M?-kpJ of p= in equation (6) corresponds, in the present
approximation, to 1—iI@, thus,

k770
1-i%@=l –M,g–kq.=l–iM?+T CP (24)

Tho corresponding react relation for isentropic flow is

The results so obtained are genarally similar to those indi-
cated in l?igure 2 although the relative accuracy of the
better approximations changes somewhat with the situation.
All the approximations are exact, of course, when CP=O.
On tho other hand, none of the approximations are exact,
mcept for isolated WW, when CP is different from zero,
rwcn though all of the approximatioti agree among them-
selves when the free-tream Mach number is unity. In
order to provide some information regarding the errors that
me likely to be incurred when Cp is not very small, figure 3
has bem prepared illustrating the variation of local Mach

1.4

~\ %>
L2

1.0

in

.8

fi –.-
-.6 -.4 -.2 0 .2 .4 .6

Cp

Fmmm 3.—Variation,approximateand exaot,of 100alMaohnumber
withpressurecoefficient,IWO=1.

number with pressure cmflicient for a free-stream Mach
number of unity.

A second case where the exaot and approximate relations
can be campared is furnished by considering the velocity
jump through a shock wave. If the flow ahead of the shock
wave is uniform and parallel to the x axis, the results may
conveniently be represented by the shock-polar diagram in
which .J- is plotted w a function of fib. The exact

relation is furnished by equation (8). The e.mresponding
approximate relations are determined from equation (10) by
setting u=, v=,and w=to zero, whereby

[ 1z#+w:=‘(&k&)++Ub d (26)

Once the ?ariation of (v?+w#) ,~th ub is determined for a
given M., the corrwponding variation of (;bx+fib~ with ii~
may be readily determined since, for this case,

%b=UO+ub, ~b=fi, ‘?i&=wb (27)

The variation of ~- with fib for Mo= 1.2 has been
computed using both the exact and approximate relations,
and the rwdts are presented graphically in conventional
shock-polar form in figure 4.

It is evident from this comparison that the best approx.inw
tion to the shock-polar curve is that obtained by equating
k to -M?(y+l)/Z70. Since all shock waves are assumed to
be normal to the flow direction in the course of the present

.2 I I . I

Mo~+l) A%T, ~---Exact f --w; [2+(Y - I)M:]/&

I-M; ‘.\ ‘\\ /
~ ---~ \\ 0 ,f0-U. \\, \

\ \ /1
* .1

\_/J \ /

( “{ “,’; # .== \

m (y+l)/uo- ‘X, “\ ;- & L.+
~-

‘@ .;”

n“-
.7 .8 .8 LO LI

Lj/o*
L2

Fmmm 4—Approxirnati and exact shookpolar diagram,Mo= 1.2.
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analysis, a notable point is that this expression for k leads
to the exact relation for the velocity jump through a normal
shock wave.

In problems such as we are considering here, the final test
is provided by compmison with experimental results. Al-
Mough both experimental and theoretical results for the
tranmnic speed range are limited, complete information
does exist at tAe present time for the drag of a single-wedge
section followed by a straight section extending far down-
stream. (See refs. 13, 14, 16, 28, and 29.) The theoretical
results were determined originally using equations obtained
by assuming that the local velocities are onIy slightly
diflerent from the critical sound velocity a* and are therefore
identical with those that would be obtained using the present
equations, provided k is equated to (Y+l)UO. Figure 5
shows the theoretical and experimental results plotted in

3 ~

2
&

1

<~
-- m
T* ~ Single-wedge

--
I

section

010.OO

0-l 2 3
M:-1

[(y+l)(f/c)]2/3
I?murw 5.—Theoreticalandexperimentaldragresultsforasinglewedgo

~ectim,k=’~.
o

the same manner as in the original papers. The small
vertical lines on the experimental data points represent the
uncertain~ of the vahms. This figure indicates -&at the
theoretical and experimental results are only in general
qualitative agreement when k= (-y+l)Z70.

The same results are replotted in figure 6 with k equated to
fil?(-Y+l)/U~ rather than (’Y+ l)/Uo. It can be seen that
the theoretical and experimental re.sdts are now in nearly
perfect agreement. Comparison of &ures 5 and 6 provides
striking evidence supporting the contention that k should be
equated ti llog(-y+ l)/UO rather than (~+ l)/UO.

DERIVATION OF INTEGRAL EQUATIONS FOR TRANSONIC
FL6W

In order to make the present work more self-contained, a
derivation of the integral equations for tmmsonic flows
having subsonic free-stream velocities will be presented even
though this has been done previously by both Oswatit.sch
and Gullstrand (refs. 20, 21, and 22). The present da-iv%
tion, in common with that of Gullstrand, proceeds through
the application of Green’s theorem in a manner closely
analogous to that employed in linearized wing theory (e. g.,

3

—

$ Single-wedge
section

k,

~ 2
qrrl Wedge serniongle

$ % o 4.5” / ‘.
‘Theory+$ o 7.5°

0 10.0”

000
0 : z “’

-1 0 I 2

M02 -1

[(T+Mf$(f/C)]m
I?mum6.—Theoroticalandexperhnentaldra resultsforasinglowodgo

5section,k=+.

ref. 30), except that proper cognizance must be takm of the
shock discontinuities and of the additional nonlinear term in
the differential equation for the perturbation velocity po-
tential For the sake of completeness and to illustrate the
simpliikations introduced by making additional restrictions
and assumptions, the deviation will be carried through for
liftiug wings of finite thickness and span, even though the
applications contained hereiu will be cotied to two-
dimensiomd flow about symmetrical airfoil sections at zero
angle of attack.

The d.i.tlerentialequation fundamental to the following
discussion is equation (6).

(6)

Since the priucipal object of the following analysis is to
determine the pressure which, according to equation (16), is
linearly proportional to the perturbation velocity component
U, it is convenient to work with an equivalent equation for u
obtaiued by differentiating equation (6) with respect to z; it is

(28)

It is advantageous to normalize the equations by lotting

where

In this way, the following:

(30)

(31)
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Before proceeding, it should be noted that the introduction
of the reduced perturbation velocity component Z permits
the ready recognition of regions of subsonic and supersonic
velocities and emphasizes the points at which sonic veIocity
occurs. This relationship becomes immediately apparent
upon substituting the definition of Z into equation (24).
Thus,

1–i-w k——
l—M?=l 1—MS ‘=l—Z

(32)

from which it is clear, for flows having subsonic free-stream
Mach numbers (&f.< 1), that fi<l when the local velocity is
subsonic, Z= 1 when it is sonic, and ~>1 when it is super-
130nic,

As noted above, the derivation proceeds from Green’s
theorem which relatea a volume integral over a region R to a
surface integral over the surface 2 enclosing l?. If u and Q
are any two functions which, together with their first and
second derivatives, are iinite and single-valued throughout
R, Green’s theorem states

where the directional derivatives on the left side are taken
along the normal n, drawn inward, to the surface 2. It is
convenient to let Q=Z and to choose u as the fundamental
solution 1/rs of the equation V*U=O

(34)

whereby equation (33) becomes

mlvii. a 1

()1
——— —.

u h TS
d2=–

T3 hn
z

Tho variables of integration in the equation are ~, ~, ~ while
3, ~, 2 are the coordinates of a point P. It must be observed
that l/rs is singular at rS=O and ii is discontinuous at the
shock wave. The point P and the shock wave must, there-
fore, bo excluded from the region R. The exclusion of P
from the region R is accomplished by enclosing it within a
small sphere. The shock wave is excluded by altering the
boundary of the region so that it goes around the shock wave.
In this way, equation (35) maybe applied to the region R.
bounded by the Zfi plane and a hemispherical dome of iniinite
radius lying above this plane, exclusive of the subregions
surrounding P and the shock wave (see fig. 7). Since,
furthermore, the values of ii may be assumed to diminish
sufficiently rapidly with distance that the contributions of
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the integrals over the hemisphere vanish, the following
redt is obtained:

where the subscript u denotes conditions on the upper side
of the w plane, the subscripts a and b denote values immedi-
ately ahead of and behind the shock wave, and S is the sur-
face of the shock wave. The volume integral is defied ~

follows w-hen .P is ahead of S. ( For sake of brevi~, # is

It is clear that the corresponding definition of the volume
integral when P is behind S can be obtaiued by rearranging
the limits of integration. If P is kept tied in the upper

413072-G7-15
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half space and the region Rl bcmnckl by the Z~ plane and a
hemispherical dome of infinite radius lying below this plane
is considered, it follows in a similar manner that

(38)

where the subscript 1 denotes conditions on the lower side
of the w plane and the volume integqd is defined as follows:

Introducing the notation

(40

and adding equations (36) and (38), we ha~e “

1Ss{[G “’%+Ji+[%-
%i(w}’~”id-JJHGN‘a)

where the surface integral over S represents the sum of the
corresponding integrals over S. ~d St and the vohrne
integral over R represents the sum of the integrals over Ru
and B,. The integrand of the fit integral of equation (41)
is zero over all of the ZJ pl.me except the surface W of the
wing sufficiently extended to include the effect of the edge
singularities and is, in certain cases, exactly equal to the
value of Z given by the linearized theory of subsonic flow
about thin wings (e. g., ref. 30).

It can be seen_that the first integral of equation (41) may
be equated h ULwhen the problem is one in which

A~=A~
and

A@ti/b~)=A(@b~)~

This condition exists in those problems where A; and
A@@~) are prescribed at the outset by the boundary con-

ditions; for example, (a) given the loading on a lifting sur-
face, iind the camber distribution; (b) given the shapo of a
symmetrical nonlifting airfoil, &d the pressure distribution.

Equation (41) can be regmded as the final integral equa-
tion for Z, but it is advantageous for the forthcoming anal-
ysis to perform two more operations. They are to intagrate
the volume integral twice by parts with rcapect to ~, taking
proper cognizance of the definitions given in equations (37)
and (39), and to decompose the surface integral over the
shock wave into components parallel to the ama of tho
coordinate system. In this way, the following, equation is
obtained:

(43)

Mthough the integration by parts of the *iple integral
performed in going fim equation (41) to (43) may seem
‘somewhat arbitrary, the resulting equation is superior from
tie point of view of obtaining approximate solutions. J1’or
example, the triple integral of equation (41) shows a very
strong influence of the velocities in the region immediately
surrounding P since they are multiplied by 1/.3. This in-
fluence is largely nullified in the triple integral of equation
(43) because part of the region haa a negative influence and
part has a positive influence. The predominant influonco
in the latter case is furnished by the term V/2 standing out-
side the integral. The contribution of distant regions is
also diminkh ed in importance in the triple integrrd of equa-
tion (43) since their influence varies inversely with tho third
power of the distance, rather than the first power aa in
equation (41). The advantages of using the formulation
provided by equation (43) wiII become more evident on
examining Appendix B and the section entitled “Sub-
critical flows.”

A further advantage is that the value of the triple integral
of equation (43) ia continuous &rough a shock wave rather
than discontinuous as is the caae with equation (41). A
point of great importance in the approximate solution de-
scribed herein arises from the fact that the integration by
parts provides extra terms (those containing iii/2) in the
integrals along the shock surface S which combine with them
already present in such a way that the contribution of these
integrals becomes very small when the shock waves approach
normal waves, as is usually the case at high subsonic speeds.
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In addition to satisfying the integd equation for ii given
in equation (43), the velocity components on opposite sides
of shock wavea must be in accord with the simplified relation
for tho shock polar given in equation (10). This equation
may be rewritten in normalized form by introducing the
quantities defied in equation (29), thus

()@.–tiJ’+@=-5,)’+ @=-mJ’= * (ii=--+)’ (44)

Two cdtornative forms of equation (44) are the follo~:

(’-’w’)(ii=-@2+@=–?G)2 +@a–mJ’=o (45)

@-ti’)[(~-%1-(’’-%)l+@5-+@4+m’2=02=0’46)
If tlm shock wave is a normal wave and the flow is paralkd
to the Z axis (i.0., z==~’=Ga=G’=(), but ?i=#?ib), it _ be
seen from equation (45) that the normalized perturbation
voloci~ component Z jumps from 1+A immediately ahead
of tho shock to 1—A immediately behind the shock. On
the other hand, equation (46) shows that the quanti~ Z–~/2
is equal on the two sides of the hock. This is consistent
with the fact that the latter quantity corresponds, in the
tmnsonic approximation, to the mass flow, which is continu-
ous through CLnormal shock.

TIM solution, by the present method, of the general prob-
Iom of transonic flow about thin wings requires the solution
of equation (43) whiIe taking proper account of the shock
rclations given in equation (44). This represents a formida-
ble task well beyond the reach of the present analysis.
Simplification can be achieved in two ways: by restricting
attention to a less general class of probkns and by introduc-
ing additional simplifying approximations. The tit way is,
of coume, much to be preferred. Accordingly, in most of
tho following analysis, attention will be confined to two-
dirnensionrdflows. The necessary equations can be obtained
from equations (42) through (44) above by titegrating in the
~ direction from ~= — o to ~=+ cu, noting that 7i=0 and
that Z and Z are independent of ~. They are as follows:

(47)

(48)

where
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(49)

and —.-.
@+@’+@ii+t)2= Fw--’ ’50)

As remarked following equation (42), considerable sim-
plification results in both two- and three-dimensional prob-
lems if attention is coniined to the detemnination of the pres-
sure distribution on symmetrical nonlifting wings of specified
geome~. This restriction permits the introduction of the
relations

AG=A7iL=0

into the integral over W in either equation (43) or (48).
This integral is then equal to the linear-theoW solution ZL
given in equation (42) or (47) and can be determined com-
pletely at tie outset of the analysis.

SIMPLIFICATION AND APPROXIMATE SOLUTION OF
INTEGILkL EQUATIONS FOR TRANSONIC FLOW ABOUT
NONLWI’ING WINGS

QUALITATNE DISCUSS1ON OF INTEGRAL EQUATIONS

The i.rutagralequations arid the auxiliary relations develop-
ed in the preceding section provide a means for the discus-
sion of the aerodynamics of symmetrical nonlifting thin
wings of specitled geometry in flows with free-stream Mach
numbers up to unity. At the present stage of development,
however, it is necessary to introduce some further approxi-
mations before solutionQcan be obtained. One of the more
accurate of these involves two statements about the nature
of the shock waves. They are: (a) all shock wavea are
assumed to lie in a plane perpendicular to the x axis, and
(b) the shock waves are assumed to be normal shock waves
(i. e., normil to the local flow direction). The9e two state-
ments are slightly contradictory in themselves but might
be expected to approach the true conditions quite closely
for flows about smoothly curved thin airfoils. The first
statement corresponds to setting cos (n, ~) and cos (n, ~) to
zero, thereby eliminating part of the intagrals over 8 of
equations (43) and (48). The secund permits m“ advan-
tageous introduction of equations (30) and (46) to elirnimti
the remainder of the integraIs over X The above asmunp-
tions correspond @ setting 5 and Z to zero both before and
after tie shock wave and lead to the foIlowing relations:

Eqllatione (43) and (4/3) thereby simpl@- to o

for three-dirnensiord flows, and
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for twodimensional flows. These equations correspond to
those used by Oswatitsch and Gullstiand (refe. 20, 21, and
22) although a number of further assumptionswere necessary
before approximate solutions could be obtained for the
velocity distribution on an airfol surface. The present
analysis also requires many of the same or similax sssnm
tions, but there are a number of generid points which shod%
be discwed before any further approximations are intro-
duced. These points were not observed in the previous
papem and the results suiler by lacking uniqueness in some
cases and failing to converge in other cases.

Before proceeding further, it should be observed that the
solutions of equations (53) and (54) must approach those of
linear theory when the free+tream Mach number is much
less than unity, since Z<l and the terms involving the
square of Z become negligible with respect to those linear in
ii, thereby leaving only

(55)

In the interest of brevi@-, the integral equations for Z
given in equations (53) and (54) maybe rewrittan m follows:

(56)

where

‘=2[H’’Ew@q ‘5m
for threedimensionaI flows, and

‘=2[+JJ%WW=] (58)

for two-dimensional flows. Although 1 is a function of Z
and is therefore unknown, it is informative to rewrite
equation (56) by solving for Z in terms of I and Z;, thus

where
L=2Z=–I

Several points are to be observed at once with regard to
equation (59). First of all, the discriminant must shays
be positive in order to obtain real values for Z, thus

Furthermore, the choice of the plus or minus sign determines
whether the local velocities are subsonic or supersonic. A
change in sign at a point where the radical is zero corresponds
to a smooth tmnsition through sonic velocity. A change in
sign at n point where the radical is not zero corresponds to a
discontinuous jump in velocity. As pointed out following
equation (46), such discontinuities correspond to normal

rmissible when they proceed fromshock waves and are pe
supersonic to subsonic velocities (or from plus to minus sign
in equation (59)) when progressing in the flow direction.
Discontinuities in the reveme direction are inadmissible since
they correspond to expansion shocks, a-phenomenon which
violates the second law of thermodynamics.

The values of ZL, and hence L, can be calculated for any
given wing and are generaly characterized by certain regions
in which ZL is positive and other regions in which it is nega-
tive. The absolute values inorease continuously with in-
creasing Mach number and the mhum positive valuea
may considerably exceedunity as sonic velocity is approached
in the free stream. Not very much can be stated at this
point about the values of I, except that they depend on the
distribution as well as magnitude of Z and that the above
inequality must be satisfied. The relation between the two
curves is of utmost importance, however, and will be dis-
cussed qualitatively in the following paragraphs.

In order to remove unnecessary complications and to facili-
tate the discussion, the following remarks will be confumd to
Lherelations in two-dimensional flow between the functions
1, L, ii, and ZL evaluated at the airfoil surface. In this way,
>ach of the four functions reduces to a function of CLsingle
mriable Z and can be illustrated simply by curves rather
ihan surfaces or hypersufaces. The subscript W is npponded
a Z and ZL to denote that the values are those at the wing
wface. In that which follows, the curves will be shown on
xvo separate plots, one containing the L and I curves rep-
wsenting the components involved in the solution of equa-
iion (59) and the other containing the Z,r and ZLWcurves
representing, respectively, the velocity distributions given
~ytransonic theory and by linear theory. In order to make
ihe discussion more deiinite, the curves will be drawn quali-
tatively as they would appear for a circular-arc airfoil having
ts maximum thickness at the midchord position. A quanti-
tativediscussion of these characteristics will be taken up for
he same airfoil in a later section.

The linear-theory solution Z% for subsonic flow about cir-
uhr-arc airfoils can be easily derived through application
If the expression given in equation (47). It is found that
he values of Z% are symmetrical about the midchorcl posi-
ion at all free-stream Mach numbers less than unity, It
01.Iowsdirectly that the L curves possess the same symmetry-

For pure subsonic flows about such an airfoil, it is wdl
mown that the more exact treatments, such as the lLlrmfin-
kien or the classical iteration methods reviewed in reference
,9, indicate that the nonlinem-theory solutions and, hence,
he ZW and I curves, are also symmetrical about the rnid-
hord position. Since sonic velocity is not attained at any
loint, the L and I curves never touch. Sketches of th(
urves for this condition are shown in figure 8. The second
la~ of tti figure illustrates the fact that ZWpOSSW-SOSlnrger
‘alues over the middle of the airfoil chord than does ?iLlr

Lol-

%

0
i

F/c

.
mum S.—Typical curves of Z, L, IZ,and rk in the suboritknl rnngc
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This relation has not been deduced from the foregoing pre-
liminary considerations but is known from many sources in
classical subsonic theory. The same result haa been found
once again in the present work by carrying out an approx-
imate solution of equation (59). The details of these calcu-
lations will be described in a later section.

The curves shown in figure 8 are typical of those for all
Mach numbers less than the critical Mach number .M=,
defined as the lowest free-stream Mach number at which
sonic velocity (ZW= 1) occurs somewhere on the wing surface.
The aforementioned symmetry properties are preserved for
all Mach numbers less than the critical, but the amplitudes
of all four curves increase with increasing Mach number.
I?or the symmetrical circular-arc airfoils considered here, the
maximum valuw of ?&, and ?& and, hence, L and I occur at

the.50-percent-chord position for all subcritical Mach num-
bcra. Thus, in addition to the requirement that ~ L at
every point, it is necessary when the Mach number is equal
to the critical value, that I=L at the 50-perceni%hord posi-
tion. A rather interesting additional requirement that fol-
lows from the quadratic nature of equation (56) togethex
with the assumption that z reaches a smooth maximum at
the 50-percent-chord station is that the I and L curves hwve
not only the same &at derivatives at this station but also
idonticrd second derivatives. A typical set of curves for this
Mach number is shown in iignre 9. It is to be remarked
that the minus sign is to be used in equation (59) for all
free-stream Mach numbers equal to or less than M&.

I--,

FIGUnE f).-Typicnl curves of ~, ~, U, and iiL at the critical Mach
number.

It is interesting to contemplate the various possibilities
that may occur when the Mach number is increased beyond
the critical. Accordingly, let us fl.rst consider the implica-
tions of assuming that the velocity distribution ?& remains
symmetrical and continuous across the chord and simply
increases in magnitude with increasing Mach number.
(This is, in fact, the only type of mixed flowfield that the
classical iteration methods have indicated, but many
doubts have been expressed from time to time regarding
the convergence of the methods when .Mo>M~) With such
an assumed symmetry of the flow, the four curves will
appear qualitatively as shown in @gore 10. As may be
seen, the curves are all r@her similar to those previously
discussed for lower Mach numbers. The outstanding
diderence is the relation between I and L. When iMo=i14n,
the two curves are tangent at the 50-percent-chord station,
rmd the radius of curvature of the I curve at the same sta-

I.c

c

)?rQmm lo.—&picd ourwm of I, L, Z, and tiL corresponding to a
shock-free supercritiord flow, symmetericd solution.

tion is equal to that of the L curve. When J40>Jk&
tangenq occurs at two points, equally spaced before and
after the 50-percent-chord station, and the sign in equation
(59) is to be changed to plus over the portion of the chord
lying between the two points of tangency. In order for
% to attain its maximum value at midchord, as shown in
iigure 10, the radius of curvature of the I curve must be
less than that of the L curve at the 50-percenkhord station.
At the tangent or sonic points, it follows from equation
(59) and the assumption of smooth acceleration or decelera-
tion through sonic yelocity that the second derivative of
the I curve is greater than that of the L curve. Similar
considerations apply for airfoils that are not symmetrical
about the midchord station. The occurrence of shock-free
flow would again require that the I curve be tangent to the
L curve at two points along the chord.

Before leaving this subject, it is interesting to inquire
what the result would be of a slight alteration of the airfoil
shape, assuming that the original shape was such that the
associated flow was of the shock-free mixed type. Consider,
for sake of simplicity, that the basic airfoil is symmetrical
about the 50-percent-chord station. The assumed shock-
free flow is therefore symmetrical about the “midchord
station and appears as shown in figure 11. In order to
preserve the geometrical symmetry, consider that the air-
foil shape is changed by the addition to both upper and lower
surfaces of small bumps located at the 50-percent-chord
station. Since the flow adjacent to the bumps is supemonic,
their disturbance pattern is propagated downstream in riar-
row bands which reflect alternately from the sonic line
and the airfoil s’tiace as shown in @e 12. Busemann
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FIGURE12.—Tmmecmio flow with shock wave.

has pointed out in reference 31 that as the disturbances
reach the rear of the supersonic region where the local
hkch numbers of the original flow approach unity, the
reflections become increasingly concentrated, the disturb-
ances amplify, and finally a shock occurs. It thus appears
that there are only a resticted numbei of shock-free mixed
flows and that,, in general, the supersonic region %wminatea
with a shock wave.

On the other hand, if the disturbances were propagated
forward they would culminate in a shock wave at the forward
sonic point. This shock, however, would be an expansion
shock in which the velocity jumps from subsonic to super-
sonic values. As mentioned previously, expansion shocks
are forbidden by thermodynamic considerations and, hence,
must be esduded from tie present analysis. This can be
accomplished by stipulating that the transition from sub-
sonic to supersonic velocities at the forward sonic point be
smoofi, or that the L and I curves retain one point of
tangency. In addition to preventing the occurrence of ex-
pansion ihocks, it appeam, on the basis of the foregoing, that
this requirement also effectively rules out all the undesired
forward propagating disturbances.

The preceding discussion provides an insight into the
mechanism for the development of asymmetrical flows about
symmetrical airfoils and for the occurrence of shock waves.
In the present work, these considerations are reflected in the
relation between the I and the L curves. Thus, recall that
if the flow is shock free as shown in figure 11, the land the L
curves are both symmetrical as shown previously in figure
10. If the airfoil shape is changed in the manner indicated
in figure 12, it is evident that both the I and the L curves
will become ikered. In so doing, the L curve remains eym-
metricsd about the mid&ord station, but the asymmetrical
nature of the Z distribution causes the 1 curve to take on
larger values over the rear of tie airfoil than over the front.
If the flow adjusts itself so that the I curve is tangent to the
L curve at a point on the forward half of the airfoil, as it
must do to avoid the occurrence of forbidden expansion
shock waves, it is likely that the curves will not be tangent
at a second point along the rear half of the airfoil. In the
application of equation (59), therefore, the sign changea
from minus to plus at the point of tangency but may change

back to rninuaat a point where the two curves have difkmmt
vah.ws. As noted previously, such a condition corresponds,
in the present analysis, to the occurrence of a shock wave
and is associated with a ZW curve of the type ahown in
figure 13.

Since it has been indicatid that the shock-free mixed flow
is the exception rather than the rule, the curves of figuro 13
may be r~mardedas typical for the aupercritical Mach num-
ber range. In any event, these curves may be considered
as the more general ones since they include the symnmtrical
curves as a special owe. These matters will arise agnin and
be the topic for further discussion in the next section in which
an approximate method for the solution of tlm integml
equation for transonic flow will be described.

k4-‘L

F/c

/ \ ‘If--+
Fmmm 13.—Typical ourves of 1, L, U, and fiL correepondiug to supor-

oritioal flow with shock, aeymmetricrd solution.

SIMPLIFICATION OF TRR INTEGRAi EQUATION

The remainder of the present discussion will be concorned
with two-dimensional flow about nonlifting symnmtrical
airfoils of speci.tiedgeometry under the assumption that nny
shock waves which may be present arenormal shocks situntecl
perpendicular to the x axis. The analysis will be based there-
fore on equation (54) which, when written in full, is

Approximate solutions of this equation could Conceivably be
worked out numerically by starting with a two-dimensional
grid of suitably selected values for ti~,~ and iterating until
convergence is obtained. Such calculations would proceed
by inserting the assumed valuea for Z into the double intogrcd
and solving to obtain the next approximation for Z@}Z),
making use of the tangency condition on the surfaces or
functions represented by I and Las discussed in the preceding
section. If the first approximation for Z is taken to be the
results given by incomprwsible or by linearized compressible
flow theory, as in the Rayleigh-Janzen and other claasical
iteration methods, it seems to be the prevailing bdief that
convergence will be obtained only when the free-stream
Mach number is sufhiently small that the flow is subsonic at
every point. It is at this point that Oswatitsch (refs. 20 and
21) supplied the important idea that mixed flow fields con-
taining shock waves can be obtained if the starting Z clistri-
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bution contains shock waves.

starting solution to be that
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Thus, in place of taking the
given by incompressible or

linearized compressible flow theory, the idea is to start with
a reasonable guess for the values of Z, being sure to include a
proper discontinuity complying with the shock relations of
equation (52), and then to proceed to the solution. As will
be seen in the succeeding sections, it is not necessary to be
highly accurate in the initial guess for%.

A source of difficulty in the numerical solution of equation
(61) by an iteration process is the double integral. If it
could be reduced to a single integral by introducing a suitable
approximation, the entire problem would be greatly simpli-
fied. In the present analysis, it is assumed, following
Oswatitsch, that approximate knowledge of the velocity
distribution is sufhcient for providing a working approxima-
tion for the double integral. In particular, it is assumed that
a suiliciently good approximation to the velocities in the
vicinity of the wing can be expressed in terms of the local
coordinate 2, the ordinatea of the airfoil surface Z(Z), and the
desired but unknown velocity distribution ZW@ on the
airfoil surface. This permits one integration to be performed,
thereby reducing the double integral of equation (61) to a
single integral.

A number of statements regarding the variation of z with
Z over the middle portion of the airfoil can be made immedi-
ately. Ii’or example, z starts from the value ?& at the air-
foil surface with an intitird rate of change given by the
irrotatonality condition

(62)

and probably vmishcs at great distances as l/Z?. These
conditions, of course, are not sticient i% determine com-

pletely the variation of ii with E, but may be used as the
basis for the development of an approximate relation.
Oswatitsch (refs. 20 and ’21) has already considered this step
and has suggested the following relation:

(63)

where b is a function of Z so chosen that the irrotationality
condition is fultilled at Z= O. Thus, di.tferentiationof equa-
tion (63) with respect to Z and insertion of the definitions of
equation (29) and the boundary condition of equation (14)
yield the following:

b=– 2Z” =– 2%” =–~ ‘“
@@%V ~laz)w k (a20/aX)w

(64)

where ~ represents the reduced ordinate-s of the airfoil,
related to the actual ordinatea by

z(z)=%z(z) (65)

Attention is called to the fact that the approximate relation
for Z(Z,Z) given above is not entirely satisfactory. Evidence

of this is provided by the fact that ii is indicatad to be zero
in the region ahead of the leading edge and behind the
tm.il@ edge where b is irdinite and that the discontinuities
in Z at the shock surfaces are consistent with the shock
relations only at the surface of the ahfoil. The errors in the
pressures on the airfoil surface resulting from the former are
small due to the attenuating influence of distance, and those
resulting from the latter have been partially compensated
for by a readjustment of the approximation at lMach num-
bers near unity where the shock strength becomes large.

Substitution of equation (63) into the double integral of
equation (61) permits integration with respect to ~. Thus,
by performing this integration and setting ZT=O,the following
approximate integral equation is obtained for ?&.:

The function E is

()~ t–z— =E(x-)=
b ?&T [: ~l@-lm+x9-–

(1–10x?+5x91n]xq +2 o+mM-71F-x4-.x9 1
(67)

The nature of E(X) is illustrated graphically in figure 14.
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l?mmm 14.-Variation of E(X) with X.
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Although the integration interval is indicated in equation (61)
to intend from?= – ~ to ~=+ a., the contribution of the
regions ahead of the leading edge and behind the trailing edge
is zero since b is infinite.The integration need, therefore, be
carried out only over the chord c. It should be noted that
the integral in equation (66) corresponds to 1/2 in equation
(56).

Although equation (66) is considerably simpler than
equation (61) owing to the replacement of the double integral
by a single integral, many of the essential difficulties remain
since the integral equation is still nonlinesx and the kernel
is singular. Site no known methods exist for the solution
of such equations, we can only proceed at the present time
by introducing additiomd simplifications. One method
proceeds by approximating ?& with some simple functions
having certain parameters tempormily unspecified. Values
for the latter are determined by substituting the functions
into the integral equation and satisfying the equation at a
limited number of points equal ti tie number of unspecified
pmameters. At this point in the analysis, Oswatitsch
assumed that the variation of ?iW across the chord could
be. represented by a parabola, one or two half-parabolas,
or a rectangle combined with a hti-parabola, as illustrated
in figure 15, all of unspecified height and chordwise extent.

J!h!ldl_-
FIQUEE15.—Aasumed chorchvise variation of UIVused by Omvatitsch.

No account was taken in the integral of the influence of
the region between the leading edge and the station where
Z~W=O on the forward part of the airfoil nor between the
strttion where Z~W=O on the rear of the airfoil and the
trailing edge. Upon inserting a selected combination of
the above mentioned elements into equation (66) and inte-
grating, there resulted a system of simultaneous quadratic
algebraic equations having as many members as there
were elements in the selected general form of solution.
In many cases, Oswatitsch used only one element, either
a parabola or a half-parabola and assumed a mean value
for b for the entire chord. The method included no provision

for the improvement of the result through iteration or other

means, the only measure of the accuracy being the degree

of correspondence between the initial and the final ZW dis-

tributions. Nevertheless, the results presented in references

20 and 21 were encouraging in that they showed many of

the known characteristics of transonic flow about airfoils.

In particular, shock waves appeared when the critical

Mach number was exceeded and moved rearward with

further increases in Mach number. However, because the
initial values for ZW were generally substituted not only
into the integral but also into the term Zwa/2 standing
outside the integral, and because the tangency requirement
on the 1 and L curves necessary for smooth transition
from subsonic to supemcmic velocities was not r&ed, a
multiplicity of solutions was often obtained. In one case,
three solutions were actually given and more could have

been obtained which would have fulfilled equally well tlm
condition of correspondence between initial and final result.
In addition, the quality of the results appeared to deteriorate
when the Mach number was increased to higher values, tlw
upper limit of acceptability appearing to be a Mach number
of about 0.88 for 6-percenMhick airfoils.

The integral equation method haa been developed further
in references 22 through 25 by Gullstrand. In tho first of
these, reference 22, equation (61) is simplified to a singlo
integral equation through the use of a more elaborate veloc-
ity-distibution function than that given in equation (63),
and the resulting equation is solved by an iteration process.
The introduction of an iteration procedure makes a marked
improvement over the method of Oswatitsch since it then
becomes practical to increasa greatly the number of elements
with which ZW is represented. The method is applied to
three 6 percentAhick NACA low-drag airfoils and the re-
sulting velocity distributions are given. In common with
the original method of Oswatitsch, dif6cultiea occur when the
Mach number is too close to unity. The highest Mach
number for which results are given is 0.91. lMore recently,
Gullstrand has presented approximate solutions for tho
velocity distributions on symmetrical airfoils in sonic flow
in reference 23.2 In both of these works, however, the itera-
tion process proceeds by inserting the known values into
both the integral and the term %.2/2 standing outside the
integral. This procedure is equivalent to replacing tho
second-degree equation for 7iWwith a linear equation and
obscures or loses many of the characteristics of the quadratic
solution discussed in the preceding section.

The present analysis also proceeds through the use of an
iteration scheme, partIy numerictd and partly graphical, but
the Imow-nvalues are substituted only into the integral at
each step of the process. The quadratic nature of the equa-
tion is thexeby retained and the tangency condition on the
I and L curves can be fulillled. Satisfaction of the latter
requirement is essential for uniqueness and convergence.
Inasmuch as the calculations for the circular-arc section
were well advanced when Gullstrand’s papers were received
and were producing reasonable results with the simplo
velocity-distribution function of Oswatitsch, it was decidocl
to continue rather than to start over using a more elaborate
veloci~distribution function. It has been found, however,
that additional attention must be paid to the influenco of
the region behind the trailing edge at the higher Mach num-
bers. Upon observance of these additional refinements, re-
sults are obtained for all Mach numbers up to unity. At tho
lower lMach numbers, these results are in general agreement
with those found by the simpler, although more approxinmto,
method of Oswatitsch. The present method carriea right
on, however, into the higher Mach number range whero tho
simpler method met with diflicmltiesand succeeds in showing
the well-known invariance of local Mach number with
changw in the free-stream” Mach number as the latter
approaches unity.

2Sfmx qnatfen (61) t@memt@ ots Maeb nnmtmr 01nrdty where B-O, tho SOU1Orcmlta
of reference Zl am obtained by S@ developing a now dcmb]dn@ml equothm to roptoco
6qnetlon (61) and tbm slmLMyIns and solving by an ltarotlon pmccduro. Tho Intcgml
qn&fon K @ @ however, to detomdno the mloeitg dkkkmtlon over tho @on of tho
ohfofl forward of tbe atotfon of ma.xhnomtbioknes. The mmahder of tho udnt!on h ob-
tabwxlby m- of the thmry of ohom&rhtlw.



—...—. . . . . . . . . . . . . .- ---.-—— -.. —— —---- ON NONLIFI’ING AJRFOHX AT HIGH SUBSONIC SPEEDS 223

In the present calculations for circular-arc airfoils, the
necessity for additionrd refinement begins at lMach numbers
somewhat greater than that at which the shock wave reachea
the trailing edge. Consequently, no attempt is made to
account for tho influence of the region behind the wing until
the Mach number becomes sticiently large for the shock
wave to reach the trailing edge. At higher Mach numbers,
the influence of this region is approximated in the following
mmmw. First, it is assumed that the shock wave which
stands at the trailing edge remains of the strong family as
the free-stream Mach number is increased to unity. It is
nssumed furthermore that the flow is parallel to the Z axis at
the shock position and that the shock wave is normal to the
local flow. With these wamptions, it follows from equa-
tion (45) that the valuea of Z immediately behind the shock
wavo are related to those immediately ahead of the shock by

Since Z= is given by equation (63), it follows that 7i~can be
expressed in terms of the values of & and b immediately
ahead of the shock wave in the following manner:

?iWa
‘b@)= 2–[l+@/bJ]2 (69)

Because the shock terminate within a ii.uitedistance of the
airfoil at all subsonic Mach numbers, equation (69) is
appropriate only within a certain range of IZI, namely,
tlmt for which Za>l. In the present calculations, the end of
the shock occurs at such large IE]when the shock is at the
trailing edge that equation (69) has been used to represent
the values for Z behind the trailing edge for all lz1. It is
further assumed that the contribution of the region behind
the trailing edge can be satisfactorily approximated by
equating Z to ?&for all points behind the trailing edge. It is
recognized that neither of these assumptions constitutes a
good approximation for Z at great distances from the wing,
but tho ~ttenuating influence of distance diminishes the
error in the values of the integral at points on the airfoil
surface. In this way, equation (66) comes to be replaced
with the following relation determined from equation (61)
by performing an integration with respect to ~ under the
assumption that the variation of Z with Z (or ~) is given by
equation (63) for stations ahead of the trailing edge and by
equation (69) for stations behind the trailing edge.

+J7ww-%1+”’(%%+ii~=iiLw+u;

iiw%)’$ ‘“‘(70)

where ZZis M defined by equation (67) and F is given by

2(1–~hlXl–(3+2~–Xq] (’71)

i /.,
413G72—G7—1O

The nature of F(X) is illustrated graphically in figure 16.
In this case it is apparent that the three integrals of equation
(70) taken together correspond to 1/2 in equation (56).

To summarize, equation (66) is used in the present calcu-
lations when the lMach number is less than that at which the
shock wave fit reaches the trailing edge, and equation (7o)
is used for higher Mach numbers. IQo .@@&ant &,con-

tinuities are produced in the value of the integrals, however,
since the contribution of the additional integrals only
becomes significant at Mach numbers ~mter than that at
which the ~rocedure is changed.
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Fmum 16.—Variation of F(X) with X.

NUMERICAL EVALUATION OF INTEGRAL

One of the principal steps in the iteration method used
herein for the solution. of equations (66) and (7o) is the
evaluation of the integrals. Since Zw and b are generally
prescribed by a set of numerical values rather than by
analytical functions, a numerical technique has been used
for the integration. This process consists of replacing the
prescribed ?i~ distribution with a stepwise approximation as
indicated in figure 17, introduc~m a mean value for b for
each of the rech”ngular elements, integrating to determine
the contribution of a single element, and summing the
iniluence of all the elements. The contribution of a single
element of width 1situated on the airfoil chord, as t.ypitledby
the shaded area of iigure 17, is given by
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x/c

FICUJRE17.-Stermise armroxhnationusedti ev~mtion of ~t-
whe; shook ‘&we is fonvard of trailing edge.

Upon performance of the indicated operations, the following
~r~o?iso!%ti!?r.?~; . . ; . . . . . ,

{

3T A
;fl=~~ (~jA,’)4 ~ rjq [(l+A’)4-O+A’)’+8 (l+A’)-8]+

}
12A (A’–l) In lA1–A~+A3 [(l+A’)’+12] +

3T B
* {

~ ~ [(l+B’)4–(l+B’)2+8 (l+B’)-81+

12B (B2–1) lnlB1-13(l+B~ [(l+B’)’+12]
}

(73)

where
A_li+2 (z–~,) 1 21,—

2bi ‘Z(Z)+ K%9(3

I

(74)
~=1,–2” (z–~,) 1 2zf

2bi ‘z(T)-i(%)(%)

Thus, the iutqgals in equations (66) and (7o) that contain
27are approximated as follows:

J%E(~)@=~z’’[c%)’(:)l‘5’
It is evident horn equation (70) that the contribution of

a single element of width 1 situated behind a shock at the
trailing edge, as typiiied by the shaded area of figure 18,
is mmposed of two parts. The first depends on an integral
involving E(X) and is evahated usiwgY1i.uthe mmer just
described for elements on the airfoil. The second depends
on an integral involtig F(X)

— Y/c

FxQuaE 18.-Stepwiae approximation used in evaluation of integral
~hen shock wave ia at tmiling edge.

which, upon evaluation, yields

1

{

TA——;&=(~+A72z]/j,[(l+A’)2+(1+A’) -2]-2Ah lA[–

where A and 1? remain as delined in equation (74). Thus,
the integral which contains F in equation (70) is approxi-
mated as follows:

Values of j, and g, are presented graphically in figures If)
and 20. (II is noted that the graphs in reference 21 that
correspond to iigure 19 of this report are mislabeled.)

WN% the simplifications introduced in this section, tho
function 1 of equation (56) is approximated by

(79)

for Mach numbers lW than those for which the shock wave
is situated at tie trailing edge of the airfoil, and

{ ‘“2[(%9’(%)1+1(3=2 ZTfl

Y=[(+)’(%)l-
%4(%w)l}

for larger Mach nuxnbars.

(80)
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Lii~
Fmmm 19.-Variation of influence function jl

[r+)’ (%?)l~fi—
21{
~ for various vrduea of ~ Computed from equation (73).

DETERMINATION OF iiGT

Tlm term ~LWthat appmrs in the integral equation for
transonic flow represents the values for Z given by linear
theory for points on the airfoil surface. Its values can be
obtained from the general two-dimensional solution for ~L
given in equation (47) by perform@ the indicated operations
and setting E=O. As noted in equation (61), simplification
occurs for the symmetrical nordifting airfoils being considered
herein because

Aii=iiU-iil=O

The Cauchy principal value is understood in the last integral.
‘I’ho present calcuIntions are for thin circular-sxc airfoils for

‘ .Im

.011 I 1 ,1,1 I 11111 Nil ,4 lAIX, NIWl?wll_hJ
.1 .2 .4 .6 LO 2 46 10

21;
b~

Fmmm 20.—Variation of influence funotion gl [r+)’(?)l~”—
# for various-value9 of & Computed from- equation..

a

which the reduced ordinates ~V of the upper surface are given
by

where 7 represents a reduced thickness ratio which is related
to the actual thickne9s ratio as follows:

;_kUo t_——
pc (84)

Performing the indicated operations gives the follo~~
~r~ion for%+

(85)

We thus have, by substituting equation (85) into equation
(59),

L (;)=2Z%–1=: FP+(R)%W ‘8’
It is seen that 7 plays the role of a similarity parameter.
llms, ii% for a family of symmetxicsl nonlifting airfoils hav-
ing the same diclmesa distribution depends only on T and
the position coordinate Z/c. Inspection of the integral equa-
tions for transonic flow shows that their solution9 for ZWako
depend only on 7 and ?/c.

Many previous papers on transonic flow (e. g., refs. 12,
14, 16, 17, and 18) have used the symbol $0 to designate a
Mach number thickness ratio parameter different from the
parameter 7 used herein. we defiition of go,suitably gen-
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eralized to allow for various expressions for k, and the rela-
tion between :0 and T are as follows:

(87)

The parameter ~0possesses the distinct practical advantage
of approaching zero rather than in6nity as the lMach number
approaches unity. The corresponding parameter referring
to the local conditions has commonIy been designated by
the symbol &

(88)

where IM is the local Mach number. Since the quantity
1—Jr is shown in equation (24) to be equivalent, in the
present approximation, to 1—M2—ku, the relation for E
may be rewritten m

which may be expressed in terms of Z

E=”$

(89)

and T as follows:

(90)

ITERATION SOLUTION OF INTEGRAL EQUATION

Solutions of the simplified ~tegral equations have been
obtained for tmmsonic flow about circular-arc airfoils by
using a numerical and graphical process. Four slightly
diflerent techniques are used depending on the Mach num-
ber or, more precisely, on the value of T. One procedure
is used for the subcritical Mach number range, a second is
used in an attempt to find supercritical shock-free solutions,
a third ta determine supercritical solutions in the range of
r for which the shock position is forward of the trailing edge,
and a fourth for still larger values of ~. The latter range
extends up to a free-stream Mach number of unity.

Subcritical flows.-solutions for small Mach numbem can
be obtained by a direct iteration process starting with the
linear-theory solution. In detail, the calculations proceed in
the following manner. The values of Z.w corresponding to a
given 7 (specified thickness ratio and Mach number) are
calculated from equation (85). The iiLWcurve is approxi-
mated with a stepwise distribution of ten steps, and the
values of the 1 curve are computed thereilom using equation
(79). @owing the values of zLW@ and 16), one obtains a
iirst approximation to ZW@) using equation (59). The
process is now repeated using the values for Zw to calculate a
new I curve, from which a second approximation can be de-
termined for ZW,etc. A typical set of results illustrating the
convergence of the procem is shown in figure 21. The
process appears to converge rapidly, at least in the present
calculations, whenever the Mach number (or more properly 7)
is sufficiently small that Z does not exceed unity (or the local
velocity does not become supersonic) at any point in the
calculation. If y is increased to a value such that ii becomes
equal to one at any step in tie iteration, how-ever, the process
terminates abruptly with the appearance of complex values
of Z. Since the results of successive iterations oscillate in

thisMach number range and since the starting ZLdistribution
provides maximum values that are too small, any such
termination occurs in the first iteration step. Such m
abrupt termination of the calculations is in marked contrast,
to the well-known property of the clawical iteration methods
of producing second- and higher+rder SOIUtions inclicmting
shock-free mixed flows. It will be shown in the following
discussion that the difference in behavior is not CLproduct of
the additional assumptions and approximations introclucrd
herein, but stems directly from the recognition rmclrekmlion
of the quadratic nature of equation (61).
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Fmmm 21.—l@mlts af iteratian calculations in the subcrltionl rnngo,
7= 0.229.

This point can be discussed in greater detail by conlining
attention to only the fit step of the iteration procedure in
which the I curve is calculated using %V=?iLW. If the present
iteration procedure is used, if the ?7% curve is rephmxl with
ten rectangular steps aashown in figure 17, and if tho 1 curv~
is calculated using equation (79), then equation (66) yields
the following result for ZW at the 50-percent-ohorcl station
of a circular-arc airfoil:

For low Mach numbers, 7 is small, the discrimimmt is posi-
tive, and the iirst approximation for ?iWcan be readily ob-
tained using the minus sign. & 7 increases, the value of
the discriminant decreases and becomes negative when 7
exceeds 0.490. This value of ?, therefore, represents m
upper limit for the Mach number at which the present
process can lead to a useful result if the starting ii~ distribu-
tion is taken to be that given by linear theory, The valuo
of zw(c/2) given by equation (91) is equal to (47/~) at
small7, and attains a maximum value of unity when;= 0.490.

The classical iteration methods of subsonic flow theory
have not shown such an abrupt termimtion of solutions
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upon attainment of sonic velocity. The same situation
occurs with the present equations if the iteration procedure
is altered so as to conform with the classical methods. This
change consists simply of substituting Z% into not only the
integral of equation (66) but also the term ZWs/2 standing
outside the integral, thereby converting the qudratic
equation for iiv into a linear equation. If this procedure is
ndopted together with the same value for the integral that
was used to obtain equation (91), the remdt of the fit
iteration is

()
c

Zw – =$7+0.29@2 (92)

Since a linear equation is solved at every step of the iteration
process, the procedure never terminates. Values for iiW in
the midchord region become larger with every iteration step,
however, and it seems to be the prevailing belief that con-
vergence is obtained only for Mach numbers less than the
critical.

It is of interest to compare the approximate results of the
first iteration step reviewed above with the react results for
the same airfoil given by Hantzsche and Wendt in reference
32. If the latter results are made comparable to the present
results by taking the limiting value corresponding to mdl-
disturbance tmnsonic flow theory, the exact result of the first
iteration step is

‘+)=:’+($-87=:’+0257”“3)
The first term of both equations (92) and (93) is that given
by linear theory and is the same in both calculations. The
diiTerencein the coefficient of the second term is the result
of the errors introduced in the approximate solution of
equation (61) (i. e., the veloci~-distribution function, bite
steps for ZW,etc.) and is some sort of a measure of the accu-
racy of the appro.simatecalculations. Just as with equation
(92), a value for Z,,, can be calculated for all 7, although the
question remains of whether the result is a valid first step in
a convergent proce9s.

If Hantzsche and Wendt had performed their iteration
calculations in a manner comparable to that described herein
so that the values of tiLare not introduced as an approxima-
tion for ii in determiningg the important influence of the points
lying near P, they would have obtained the following relation
(again to the approximation of transonic flow theory) as the
result of the first iteration:

‘“(i)=l’~

d=1+ 1—:7+1.108F* (94)

This result is directly comparable with that given in equa-
tion (91) except that the double integral of equation (61) is
evaluated exactly rather than approximately. Again, the
accuracy of the approximations can be evaluated by ccm-
paring the two equations. More important, however, is the
fact that the exact results also terminata when ; exceeds a
certain value (0.503) and that the corresponding value for Z
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is unity. This subject is discussed in greater generality in

Appendix B.

As noted above, the iirst step of the present iteration pro-

cedure starting with ‘& produces maximum values for Z

that are too large. Consequently, the calculations terminate

at a value of 7 that is somewhat less than corresponds to

the true critical Mach number. Solutions can be obtained

for the remainder of the subcritical Mach number range,

however, if the starting iiw is selected having the same general

form but hirger values than the corresponding ‘i& distri-

bution. A good starting distribution can be obtained by

simply extrapolating the final results for smaller r.

Calculations of the @e just described have been xed

through for several values of r less than the critical value

(Tm=O.598), defined as the smallest value of 7 at which sonic

velocity (i&= 1) is attained in the final transonic solution.

The results of these calculations are presented in the form of

chordwise iiw distributions for various 7 in figure 22, and in
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FIGURZ22.—Chordwise variation of Uwfor various 7 in the submitical
range.

the form of curves of tir vemus ; for various Z/c in @u.re 23.3
The corresponding vahw.s~LWgiven by linear theory are also
shown in figure 23. Comparison of the two sets of curves
reveals that the values of timcoincide with those for iiLWat

JThe msolts for;:?- are ok fnelndedqn.t~ greDhs h order to OX@ete the mbdtlcnl

r.mm WEII ~I@ tbY ore ohined-mbw a dfffe%nt iteration m=hre. Sfnm the pm
cedmekthe sarnea9 that &wraXd h the next S?ctkm,however, m hrthm comment Is
nmesaryatthfapdnt.
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small ? (low Mach number) but become larger than those for
tiLWat most stations on the airfoil as 7 approaches 7m. These
trends, which are in accord with generally accepted experi-
mental and theoretical rem.dts,will be discussed at greater
length in a later section.

Shock-free supercritical flows.-Although it is indicated
in the preceding discussion that the present iteration proces
does not lead to supercritical shockfree flow about airfoils
when the starting point for the itaration calculation is ZL, it
is considered of importance and interest to ascertain the be-
havior of the prwent approximation when such a solution is
deliberately sought by starting with sticiently large values
for ii that 1 is greater than L. The intares.tin this matter is
heightened by the fact that the less detailed method used by
Oswatitsch leads to such results over a limited range of super-
critical Mach numbem. (See figs. 4 (c) and 4 (d) of ref. 20 or
figs, 7 (c) and 7 (d) of ref. 21.) Accordingly, iteration calcula-
tions have been performed starting with 7 greater than ;.
and a symmetz-ical shock-free ZW distribution containing a
region of supersonic flow (iiW> 1) over the middle portion of
tho chord. A fllght change in the iteration procedure is
necessary, however, to eliminate the di.liiculty arising from
the requirement described in an earlier section that I=L
at the sonic points. To carry out the solution in the same
mmner as before would require that the tiw distribution be
found for which the corresponding I curve is tangent to a
given L curve. Rather than attempting to find solutions by
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such indirect means, a method is used in which a new value
of 7 is determined in such a manner that the tangency con-
dition is fdiilled. Ii particular, the procedure is to caIculate
the I curve using equation (79) and the assumed values of 7
and Zv. The next step consists of plotting the I curve and
fitting an L curve computed from equation (86) for whatever
value of 7 is necessary to fulfill the tangency condition as
shown in figure 10. A new set of values for & can now be
calculated using equation (69).

zw=l*~ (59)

where the minus sign is used at stations upstream from the
forward sonic point and downstream from the rear sonic
point and the plus sign is used for the intermediate stations.

This process has been carried out for a number of assumed
initial iim distributions. Figure 24 shows a typical set of
results obtained by starting with an initial value for? of 0.65
and a tiw distribution obtained by extrapolating the trends
indicated by the solutions for subcritical flows. The as-
sumed initial distribution is indicated by a dotted line in the
upper portion of part (a) and the associated 1 and L curves
are shown immediately below. The tangency requirement
is fuliilled by taking 7=0.642 which comparw well with the
initiil value of 0.65. The corresponding Gw distribution
calculated therefrom is shown in the upper portion of part (a).
Several points of interest are to be noted. The first, of
course, is that the assumed and calculated ZW distributions
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me distinctly dissimilar. The second is that the calculated
distribution bears a marked resemblance to a result given
by Oswatitsch (see fig. 4(d) of ref. 20 or fig. 7(d) of ref.”21)
which may be described as a symmetrical ~W distribution
containing an abrupt espansion on the front of tie airfoil
and a compression shock symmetrically situated on the rear
of the airfoil.

Since the assumed and calculated ZW distributions are too
tilmilar to be regarded as solutions, the iteration procees
was continued, using the calculated results of the first step as
the initial values for the second step- The results of this
calculation are summarized in part (b). As indicated, 7
changes from 0.642 to 0.671 and the new % distribution is
again markedly &similar to the initial distribution. The
calculations have been tied through several more steps
and the results are ahown in parts (c) through (f). It can
be seen that the initial and calculated iiWdistributions do not
agree, even qualitatively, until several steps of the iteration
process have been mmplet~d. In the meanwhile, the value
of 7 has decreased to approximately that for the critical
LMachnumber and the region of supersonic flow has effec-
tively disappeared. The sfi and last step of the iteration
calculations presented in figure 24 has produced a value of
7=0.600 and a IiW didribution nearly identical with that
shown in figure 22 for the critical Mach number ~m=0.598).
Although this figure shows the reimhk of only one series of
calculations, similarresults have been obtained starting with
other msmrnedsymmetrical, shock-free, supercritical fir dis-
tributions. No case was found in which the calculated values
repeated the ~umed values until 7 had decreased to ap-
proximately 7= and the supemonic zone had vanished.

It should be noted before leaving this section that these
results are not presented with the intention of proving-or
dkproving anything about the more fundamental question
of the existence or non&stence of shock-free transonic flows.
The purpose, ratier, is to illustrate the behavior of the
present approximation furnished by the simplitled integral
equation and the iteration method of solution.

Supercritical flows-shock wave forward of the trailing
edge.—The preceding section has shown how the present
method of wdcukking veloci~ distributions on thin air-
foils fails to converge when 7 is greater than $. and the flow
is assumed to be shock free. The identical iteration pticess
will converge rapidly to a solution, however, if the initial ZW
distribution contains a discontinuity in accord with the
shock relations. The method Starts by selecting a vrdke for
7 and assuming a reasonable distribution for ZW over the
chord. The main point to observe in the selection of Zw is
to include a shock wave (a discontinuity in%) through which
?i~ jumps from 1+A immediately ahead of the shock to 1—A
immediately behind the shock. As noted previously, such

a jump in Zw is consistent with the assumption that the
shock wave is a weak normal shock. The next step is to
cnlculate the 1 curve using equation (79) and the assumed
values of iiw and 7. The I curve is plotted and .hnL curve
is computed using equation (86) and whatever value of 7 is
necessary to fuliill the ‘tangency coridition, as illustrated in
figure 13. A new set of values of Zw can now be calculated
using equation (59),’ tid&g ‘propti care to change from the

minus to the plus sign at the point of tangency and tlmn re-
turn to the minue sign aft of tho assumed shock position. In
&is way, a new approximation for tilmZW distribution cor-
responding ta the new value for 7 is obtained, but the posi-
tion of the shock wave is unaltered. If the new values for 7
and iim are sticiently close to the assumed values, it is pre-
sumed that an approximate solution has been found. In
general, however, such a close correspondence is not obtained
after the first step, and the entire calculation is mpmtccl
using the new values for 7 and ZWin place of thoso assumed
initially. Throughout the process, the position of tho shock
wave is kept iixed, and the value of 7 is allowed to vary m
necesary. In this way, the iteration process selects tlm
solution for a given shock position rather than for rLgiven
Mach munbor. This process was carried out with the shock
wave situatid at severrd different stations on the airfoil
chord and was found to converge rapidly even when the
selected initial values for ZWand 7 diflerod considerably from
their final values. A typical set of results (namely, that for
the shock position fixed at 90-percen&chord station) is shown
in iigure 25. In common with the rest of the calculations,
the initial values for.ZW and 7 were selected by extrapolating
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FMJURE25.—Reaulti of iteration calculations with shook wavo rd 90-
permnt ohord.
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the trends indicnted by the calculations for more forward
shock positions.

Calculations of the type just described have been carried
through with the position of the shock wave fixed at 60-,
70-, 80-, 90-, and 100-percent chord. The results are
presented as chordwise ?& distributions for various Z in
figure 26 and as the variation of 7iWwith 7 at selected values

/

+

,1.34-
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.1.0 ~
o .2 .4 .6 .8 LO

—

—

—

—
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\\
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\

Zc

Ilomm 2f3.-Chordwk variation of uw for various 7, shock wave for-
ward of trailing edge.

In order to test the method further, calculations were

repeated in many of the cases using a different set of initial

values for ; and Zw. The results of two such calculations
for the shock position at the 90-percent-chord station are

shown in figure 28. Although the results shown in part (a)

were obtained using values for ZW that were purposely

selected to be too large and those of part (b) to be too small,

it can be seen that similar results are obtained after only a

few steps of the iteration process. These same results are

presented in a second manner in iigure 29 wherein the values

of Zw at several stations on the chord are plotted as a func-

tion of F. The final values to which the C.rdctiations con-

verge (i. e., those given in fig. 27) are indicated by the solid

line. The points connected by the dotted lines tie the

values obtained at each step of the calculations. It may

be seen that the present procedure appems iirst to place

the values of Zw and F on the curve of correct solutions and,

subsequently, to converge to the final result.

Superoritical flows-shock wave at the trailing edge.—The

calculations just described indicate that the shock wave

moves rearwmd with increasing 7 and reaches the trailing

edge when 7=1.34, corresponding to a Mach number of 0.92

for a A-percent-thick circular-arc section. The calculations
for larger subsonic Mach numbens were performed under
the assumption that a strong shock wave remains at the
trailing edge. As in the preceding analysis, the shock wave
is assumed to stand perpendicular to the z axis, and the flow
is assumed to be normal to the shock wave, even though
these conditions cannot be correct at the base of the shock
wave since the flow must turn through a fite angle.

The method of calculation used for the higher Mach
number range where the shock wave stands at the trailing
edge is essentially the same as that used for mixed flows at
lower Mach numbem. A slight mo~cation enters in that
the I curve is calculated by means of equation (80) rather
than (79). This change is made because the contribution
of the region immediately behind the trailing edge becomes
of increasing significance as the Mach number approaches
unity. Since the contribution is small at the lowest Mach
number for which the shock wave is situated at the trailing
edge, no significmt discontinuity is produced in the results
by this change in procedure. A dii3icultyarisesin the itera-
tion process, however, because there is no longer any dis-
tinguishing feature to fix the value of ? for -whichthe solution
is being sought. To review, for pure subsonic flows, 7 itself
can be maintained at a fixed value horn step to step in the
iteration process. At Mach numbers somewhat greater
than the critical, where the shock wave stands on the airfoil,
the tangency requirement makes it dii3icult to prescribe 7
directly but a satisfactory method is obtained by fixing the
shock position and carrying out the iteration process until
fie Wsociated value for y is fo~d. At SW lww Mach

numbers, the first method is of no avail and the setind
method cannot produce a unique result since the shock wave
is considered to be fixed at the trailing edge over the rest of
the range of subsonic ikeeatiewn Mach numbers. l?or lack
of a better method, the calculations were carried out for
this range using a procedure that might be described m
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Approx i’
— Initial 1.100
‘------Fast 1.222
‘——–Second I.1 12
‘-—-—Third 1.109
—--—Fourth 1.073
—---—Fifth 1.051
——-Sixth 1,047

(a) Initial Uw too large.

.
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Approx T
Initiol 1.100

-----— First .864

3
‘— — — Second .975
‘-—-— Third .974
—--— Fourth .997
—---— Fifth 1.006
— —- Sixth 1.015

‘r

(b) Initial77~ too small.

\

1,

.

FIGURE28.—Re9ults of iteration calculations started with deliberately poor assumption for tiw, shook wave at 9(t-percent chord.

being partly iteration and partly trial and error. The
calculations proceed ns follows: A value of 7 is selected
and an estimate mnde for the associated & distribution.
On the basis of these values, calculations are performed
resulting in a new set of values for 7 and ?&. similar cal-
culations are repeated on a trial-and+rror basis using
the same ZW distribution but various values for ; until
the resulting 7 is equal to the assumed value. These
values are then plotted on a graph of tir versus 7. If these
values were an actual solution of the integral equation, the
resulting values of ?& would also be equal to the assumed
values. In the present calculations, however, the resulting
valuea of ?& are generally found to be somewhat smaller

than the assumed values. These new valuea for ?& to-
gether with a smaller value for;, are next taken as the start-
ing values for a second series of trial-and-error calculations.
Again, the ZWdistribution is held tied as various values are
tried for 7. The calculations are again terminated when
the value of 7 is so selectad that it repeats itself. The values
of ?& and 7 are then plotted on the graph. UnfortunaMy,
it was not found possible in the present calculations to de-
termine a set of values for Zv and 7 that would repeat them-
SOlvw precisely. In all cases investigated, the values of
?& and 7 were found to diminish somewhat in successive
iteration steps. The source of this di.fliculty has not been
ascertained at the present time. It could be due to one or
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Fmmm 29.—Results of calculations with shook wave at 90-percent
chord. (Cross plot of data in figures 2S and 28.)

more of the simplifying assumptions introduced in the ap-
proximate calculations or it could be due to the fact that
an iteration process was not devised which would lead to a
definite result, as at smaller;.

There m? a number of points, however, which tend to
indicate that the successive values of ?& and ? obtained
after the iirst few iteration steps may be regarded as near
solutions. One of these concerns the fact that calculating
made starting with difi%rent initial values for ?iW and 7
converge ta a common result after the iirst few iteration
steps. To illustrate, results of typical series of calculations
starting with F of about 20 and three different Zw distribu-
tions me shown in fiajge 30. It can be seen that the three
sets of calculations all converge to detemnine a single line
after the first few iterations. In order to promote insight
into the significance of the indicated variation of ? from step
to step of the iteration process, the corresponding Mach
numbers for a 4percen&tbick section are also shown.
Compmison on this basis shows that the variation of lMach
number from step to step of the iteration process is very
small.

24

16

-8

I
-–– Equatian (98) ?/c

// 1/ I !

M. for VC=.04

.95 .97 .98 .985

FIGURE30.—I&ult9 of iteration calculations started with delibomtely
poor amumption for tire,shock wave at trailing edge.

An additional factor lending credence to tile applicability

)f the solutions for large F is provided by tho plmnomeuon
]f the Mach number freeze wherein the local MaclI number
s invariant with changes in the free-stream Mach number
Whenthe latter is near unity or, more precisely,

(w)zm- =0
0 Are-l

(96)

ct is known from the papera of Viucenti and Wagoner (ref.
!4), Liepmam and Bryson (refs. 28 and 29), and others that
he corresponding approximate relation yielded by the smdJ-
I.isturbancetransonic theory is

d.i()z. +0
=0 (W)

‘f the parameter k involved in the definitions of ~ is inclo-
jendent of MO, as is the case when k is taken b bo as givm
n equation (17), and if the local Mach number M is cal-

ulated using equation (24), the above two relations are
ompleteIy equivalent. If k contains 34., howevor, as it
low in the preferred definition given in equation (7), dik?/dil10
nly vanishes when M, as well as MO, equals unity. If it is
ssumed that the freeze extends over a finite mngo of Mach
umbers, the variation of ?7with F must obey the following
elation for large ?

G—I
——=const.f— pn (97)
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13quation (97) has been used to compute a curve of ZW
venws ? under the assumption thmt the freeze extends at
least to as small a value of 7 as 10, which corresponds to a
Mach number of 0.978 for a 4-percentAhick section. These
lines, which all have the characteristic form

(98)

are also shown in figure 30. It can be seen that the lines so
determined are almost identical with those determined previ-
ously after the first few steps of the iteration process. This
comparison shows that the solutions obtained by the iteration
process possess the phenomenon of the Mach number freeze.
A further check was made by extrapolating the curves of ?iW
versus ? to 7=40 with the aid of equation (98) and using
the values thus obtained as the initial values for an iteration
cnlcnlotion. It is found that these values nearly satisfy the
integral equation although the values of ?iWand 7 diminish
slightly from step to step during the iteration process, just
as at the smaller valuea of 7. The significance, in terms of
Mach number, of these changes is even smaller tian at
lower Mach numbem. I’or example, the changes produced
in the values of Z and 7 in the first step of the iteration
process correspond, for a 4-percent-thick section, @ an
indiscernible change in the local Mach number and a change
in the free-stream Mach number of less than 0.001. On the
basis of these results, it appears proper to extrapolate the
curves of 7iWversus ? to values of 7 approaching iniinity,
corresponding to a Mach number of unity, by using equa-
tion (98).

The results of the calculations for the range of F for which
the shock wave is at the trailing edge are summarized in
figures 31 and 32.

RESULTS

RESULTS IN TERMS OF RRDUCED QUANTITIES

The calculations described in the preceding sections have
produced values for the velocity distributions at the surface
of thin circular-arc airfoils in flows having free-stmxunMach
numbers rrmging from zero to unity. These results are pre-
sented in gmphicrd form in figures 22, 23, 26, 27, 31 and 32
in termsof the reduced quantitiesz and 7 defined in equations
(29) and (84) and repeated below.

where k represents the coefficient of the nonlineax term in
the approximate differential equation for w (eq. (6)).

The results of a number of previous investigations of
transonic-flow theory have been presented in terms of the
quantities $0and g defined in equations (87) and (88)

to=– &#;213’
Tho relations between the two

● by equations (87) and (90)

go=_(+)2’3,

1—M

~=–pdt(qc)]’”

sets of quantities

t=;–?

are given

20

F
16

r

12

i7w

8

4

0

-4
“o

T =14f)--
tzQ--
lorh-

— 8,0==
6.0--
40--
2s)--
L34-

*

.2 .4 .6
F/c

;
/1

/1

/

/’
If

11

r /////-//
/’

L 1
//

f

/

,,/’

/

/“”
/’0

.8 I 0

FIGURE31.—Chordwise variation of uw for varioua 7, shock wave at
trailing edge.

I?ressure distribution.-lh many applications, the quanti~

of prime interest is the pressure distribution rather than the

velocity or Mach number distribution. Because of the
simple relation between the pressure coefficient and the
perturbation veloci~ provided by equation (16), however,
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FIGURE32.—Variation of uw with ; for various values of SIC,shock wave at trailing edge.
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it is n simple matter to determine the pressure distribution
once the velocity distribution is lmown; thus,

‘2(l —Moq –=_2(t/c)2’3 ii
cp=–g=– —

U&— u ()up ?13 (99)
0

The latter expression for C, suggest-sthe introduction of n
reduced pressurecoefficient ~ defined by

~=(u~)’~——
(t/c)’~ ()

CP=–2 ;n (loo)

Equation (100) may be rewritten in terms of 1. and : as
follows:

~=–2($–:o) (101)

The foregoing results have been used to calculate ~ for
numerous stations on tie airfoil chord for various f. (or 7).

-7

.

-6

-5

-1 : >

~=-1.41-
-4 ❑-l.59-

=-1.84-
=-2.66 \\\\\
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(a)
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F/c

(a) Subcritical.

FrcJuRE33.—Chordwise variation of 5. for various g.

The results so obtained are presented in figure 33 in the form
of chordwise pressure distributions (~ vs. ;/c) for various
& This figure is presented iu three parts: Part (a) contains
the results for subcritical Mach numbers, part (b) for slightly
supercritical Mach numbers for which the shock wave stands
on the airfoil surface, and part (c) for still larger Mach num-
bers for which the shock wave is at the trailing edge.

The same results are presented in another manner in figure
34 in which the variation of ~ with (0 is plotted for various
stations Z/c along the airfoil chord. This form of presmta-
tion is the counterpart, in terms of reduced quantitioa, of the
plots commonly found in many experimental investigations
showing the variation of pressure coefficient CP with freo-
stream Mach number M. at prescribed points on tlm surface
of wings and bodies. The corresponding curves given by
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(b) Shock wave forward of trailing edge.

Figure 33.—C0ntinued.
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linear theory are shown in figure 34 by dotted lines. These

curves me computed using the equation

~.=-.#zE+(H%H‘102)
obtained by direct substitution of equations (87) and (100)
into equation (85). It can be seen that the present rawdta
and those of linear theory are in good agreement for values
of & considerably less than zero. For ~0near to zero, how-
ever, tlm present remdts display a behawior completiy dif-
ferent from that indicated by linear theory. This is as it
should be since it is well lmown that linear theory is totally
inadequate for the analysis of steady two-dimensional flows
about airfoik when the Mach number approaches unity, or,
in the present notation, when ~. approaches zero.

t I I 1 ,
i I I I

E/.{ .4 I I I 1 Ic’

--~o=-.l 36

–&c-216
-4..-.455
--.$.=-.630

--&= -.e23
1%

-o .2 .4 .6 .8
F/c

u

(o) Shook wave at trailing edge.

l?nxrm 33.—Conoluded.
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l?mmm 34.-Variation of ~= with :. for various zjc.

In order to provide further information regarding the sig-

nificance of the indicated variations of ~ with &, lines of

constant ~ have also been included in figure 34. The local

velocities are subsonic if &is negative and are supersonic if ~

is positive. The Mach number freeze is indicated in fignre

34 by the curve representing the variation of ~ with & at a

given station Z?/cbecoming parallel to a line of constant &

It can be seen from this figure that such behavior occurs at all

stations on the airfoiI for,~. near zero.

Pressure drag.-The foregoing paragraphs have been

concerned with the determination of pressure distributions

on thin nordifting circular-arc airfoil sections. Once the9e

results are known, it is a simple matter to determine the

section pr~~e dr~ ~efficiant cd

d J–2 “cdzu&cd= — .—

$U:c co ‘h

(-lo3)
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It is convenient at this point to introduce a reduced section

drag coefficient G defined in tams of reduced quantities,

thus

(104)

It is clear from the definitions of ~, z, ~, and Z that the

relation between Caand G is

It should be remarked &at some additional error is incurred

in the present calculations of drag because the pressures are

large and only poorly determined in the vicinity of the lead-

ing and trailing edges.

The variation of & with E. has been computed and the

results are shown in figure 35. It can be seen that z is

zero for :0 1S than — 1.418 (corresponding ti the critical

Mach number). The rapid rise of ~ as & is increased be-

yond the critical is associated with the rearward movement

of the shock and terminates abruptiy when the shock reaches

the trailing edge at &= — 0.825. The drag coefficient con-

tinues to increase slowly with further increasw of & although

at a much reduced rate; and, finally, at a value of .!jOsome-

what less than zero, G becomes invariant with further changea

in 10. This latter behavior is associated with the Mach

number freeze, thus,

Since the Mach number freeze corresponds, in tho approxi-
mate theory to (d$/d.%)Efi=O, equation (106) may be
simplified b the following form:

[ 1=4(ZLk-(Zh
t

(107)

where (Z.)m and (ZtJ~~ refer to the ordimtes of the upper
surface at the leading edge and trailing edge, respectively.
Since both of these quantities are zero for the circular-wrc
airfoils treated herein, it follows that

(?z: f.-o
=0 (108)

The corresponding results for symmetrical doublo-wedgo
profiles given in references 17, 13, and 14 by Trilling, Guclor-
ley and Yoshihara, and Vincenti and Wagoner, reapectivcdy,
are also shown in figure 35. Except for the value of Z at
:.=O, the two sets of results bear ordy a qualitative resem-
blance. In some casea, the reason for the dilTeronco is
clear; in other cases, the reasons are mom obscuro. An
example of the former concerns the result that tho drag of
the circukw-mc section is zero for & Ieas than —1.408,
whereas the drag of the double-wedge section remains finito
for all co. The latter behavior results from the fact that tho
critical Mach number is zero for the double-wedge section.
The reasons for tie pronounced difference in almpe between
the two curves for drag at subsonic speeds are not so clear.
The immediate explanation is that the shock wavo move~
rearward across the chord of the circular-arc airfoil at a moro
rapid rate than it does with the double-wedge airfoil. I?or
the circular-arc airfoil, the shock wave has moved to the

8
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I?muan 35.—Theoretiosl drag results for ciroular aro and double wedge sections.
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trailing edge when ,fOequals —0.825. This condition marks

the end of the rapid increase in drag. On the other hand,

Trilling’s results for the double-wedge airfoil indicate that

the shock wave does not reach the trailing edge until the

free-stream Mach number is unity, or fO=O. Whether this

diiTerence is an actual property of the solutions of transonic,

small-disturbance theory for these two profiles, or the result

of simplifying assumptions introduced in either the present

analysis or that of Trilling remains an unanswered question

at the present time.

RESULTSIfi TEEMS 0)?PHYSICALQUANTITIES

The preceding section has summarized the results of the

present calculations of the pressure distribution and drag of

thin circular-arc airfoils in flows having free-stream Mach

numbers up to unity. These results are given in terms of

the reduced parameters ~p, ~, and &, which possess the ad-

vantage of condensing the information for all thickness ratios

onto a single curve, but the disadvantage of being some-

what complicated and unfamiliar. Consequently, it is the

iLim of this section to re-express these results in terms of the

more conventional quantities Ov, c~, MO, and t/c.

Critical Mach number,-An airfoil proper~ that is always
of interest is the critical Mach number, Mm. The variation
of the critical Mach number with thickness ratio can be
rendily determined from the result that ~a= —1.408, thus,

.%r=– 1—M-2
~ok(t/c)]z/’=– 1.40s

(109)

In this and in tho remainder of the discussion, it is assumed
whenever the results of numerical computations are pre-
sented that k is as defined in equation (7) and that y b
equal to 1.4. Figuro 36 shows a plot of the results of these
calculations together with the corresponding remdts ob-

1.00
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.92

,88

MC,

.84

.80

.76

.72

\ ,r-hneor theory

/ ,~-K&rm~n-T~ien

,/ ,/ —pre~~t ~l~f~t]~”~
\

\

\

.02 .04 .06 .08 .10 .12 ,
t/c

l?mmm 3&-Variation of mitical Mach number with thicknem ratio
for circular-aro airfoil.

tained using (a) linear theory and (b) thin-airfoil theory for
incompressible flow together with the K6rm6n-Tsien rule to
account for the effect of compressibility. In both of the
latter calculations, the variation of C,a with M. was deter-
mined using equation (23), as is customary in engineering
practice. It can be seen that the present calculations indi-
cate that the criticaI Mach number is somewhat less than
given by either linear theory or by the K6rmAn-Tsien method.
This is in accord with the results found when the more exact
theories are applied to thin airfoik.

Pressure distribution.-The foregging general results have
been applied to determine the pressure distributions on a
4-percent-thick circular-arc profile. These results are
presented in two alternative forms in figures 37 and 38. The
first of these shows the chord-wisevariation of Cpfor various
free-stream Mach numbers and illustrates the development
and rearward movement of the shockwave as the free-stream
Mach number increases beyond the critical. The second
form shows the variation of Cn with lMOfor selected points
x/c on the airfoil chord. Three sets of auxiliary lines are
also shown; they are (a) lines of constant local Mach number
computed using equations (24) and (25) and (b) lines showing
the variation of (?Pwith MO at selected points on the airfoil

chord computed using thin-airfoil theory for incompressible
flow together with the Ktlrmk-Tsien rule. At Mach num-
bers less than the critical, it can be seen that the pressure
coefficient at a given point on the airfoil surface varies with
Mach number in a manner similar to that predicted by the
K6xm4n-Tsien rule. It is also apparent, as was pointed out
earlier in connection with equations (22) and (23) and figure
2, that the value to be taken for the criticil Mach number
difle~ slightly depending on whether the lines of constant
local Mach number are computed by the present approxi-
mation (eq. (24)) or by the exact isentropic relation (eq.
(25)). The irregular behavior of the pressures on the rear
half of the airfoil at supercritical Mach numbem is associated
with the passage of the shock wave. At lMach numbers near
unity, a completely dif7erentbehavior is evidenced in which
the vahm of c, change with M. in such a manner that the
local Mach number remains essentially constant. Direct
calculation shows that the present theory implies the fol-
lowing approximate relation for dCP/dMO at a free-stream

Mach number of unity.’

This may be compared with the exact relation given by
Viicenti and Wagoner in reference 14.

.

(111)

4It mfght bo noted hem tbd nmnerons Inwstigatorn have given the npprerfmato mfatfon
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tlom for dCJdM atM..l follow dimtlY from tbo rmtfmhr deftnftfon of k. It k fntins
tn observe that the qmsslon for k @vm fa wwmtion (7) w~~ tie more ~~ *tin
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I?mmm 37.-Chordwiee variation of C= for varoua free-stream Mach numbem, 4-percent-thick circular-aro nirfoil.

Pressure drag.-The variation of the section pressure drag
coefficient cd with MO has also been calculated for the &
peroenkthick circular-arc airfoil and the results are shown in
figure 39. The general features of this curve are very
similar to those discussed previously in connection with the
corresponding curve of figure 35 for the reduced quantities.
The major point of difference concerns the slope of the curve
at a Mach number of unity. Thus, the preceding discussion
has disclosed that cliijd~Ois zero at a Mach number of unity;

whereas figW?3 39 &hOWSthat &#ikfo k nE!f@vO at b!fO= 1.

Direct substitution gives the following value for”this slope:

(112)

Vincenti and Wagoner have shown in reference 14 that the
exact relation for flow about a closed airfoil is

a%()a dfa.l
=–* (Cd&, (113)

The negative value of the slope given in equation (112)
arises from the fact that the auanti~ k which appears in all

the reduced parameters @ ~, ~., etc.) is a function of IMO.

If, as in many other papers, k is equated to (Y+l)/U’O and

is thus independent of .&f., the value of the slope is zero,

thus

(114)

1,0

COMPARISON WITH EXPERIMENT

Inasmuch as the results described in the preceding sections

were calculated after making numerous simplifications and

approximations, not the least of which is the assumption of

inviscid flow, it is desirable to include some comparisons

with experiment. This is particularly tie for tho premnt

problem since it is well known that phenomena outside tlm

scope of potential theory, such as separation, boundary-layer

shock-wave interaction, etc. are prominent features of trrm-

sonic flow about airfoils. Since it is indicated in the pre-

ceding discussion &at the present results are in general

accord with the proven Prandtl-Glauert and Kfirmtin-Tsicn

results in the subcritical Mach number range, the following

remarks will be con.iined to the supercritical range.

There are at least three papers availablo which pmsont

results of detailed measurements of flow at high subsonic

voIocities about symmetrical circular-asc airfoil sections,

namely, referenoe 33 by Liepmann, reference 34 by Liep-

mann, &hkenas, and Cole, and reference 35 by Wood and
Gooderum. The fit two of these are concerned primarily
with bound~-layer shock-wave interaction and contain
statements casting doubt on the accuracy of the values in-
dicated for the free-stream Mach number, a quantity of only
secondary interest in their investigations. In gonerd, it
appears that values given for M. in these two papers me
somewhat too great. The more recent investigation of
Wood and Gooderum appears to be better in this particuhw
and posses-seatho advantage of being made with an inter-
ferometer so that knowledge is gained about the entire flow
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field, A disadvantage, however, is that the tests were made

using a 12-percenhthick model, which severely strains the

assumptions of trrmsonic amalldiatnrbance theory. Never-

theless, the comparisons will be made with the data of

reference 35.

The studies of Liepmann (ref. 33), Ackeret, Feldmann, and

Rott (ref. 3(3), and others have shown that the boundary

layer can have a profound influence on a transonic flow field.

This immediately raises a question regarding the usefulness

of a potential-flow theory, such as the present, which dis-

regards the boundary layer completely. In order to illustrate

better the nature of these effects, two interfsrograms of the

flow about 12-percmt-thick circular-arc airfoils are repro-

duced from reference 35 and shown in figure 40. The free-

stream Mach number is 0.88, and the Reynolds number based

on the chord is 600,000 for both photographs. The condi-

tions for the two flows difTer in that the boundary layer is

lruninar in the flow pictured on the left and turbulent in

that pictured on the right. The interferogram for the

lrunirmr case shows that the shock waves are of the A type

and that the flow separatea near the midchord station.

When the boundary layer is turbulent, however, it may be

seen that the shock wave is of the simple single wave type,

.024

.016

%

.008

0 .92 .96 Lo

&
)?IGmrm 39.—Variation of cd with itf., 4-percent-thick oirouhr-aro

airfoil.

and that the extent of the region of separated flow is greatly
diminished. From this pair of photographs, it is apparent
that two of the simplifying assumptions introduced in the
coume of the present analysis (i. e., (a) no flow separation
occurs and (b) the shock wave is a single normal wave) are
in better accord with the physical phmomsnon if the bound-
ary layer is turbulent ahead of the shock wave than if it is
lamimm. Figure 41 shows experimental pressure distribu-
tions determined from the two interferograms of figure 40
together with the corresponding theoretical results. Because
of ditliculties in interpreting the interferograms, the experi-
mental pressure distributions presented in reference 35 and
reproduced in figure 41 are terminated at the separation
point. It can be scan that the theoretical results are in
substantial agreement with the experimental data available
for the portion of the airfoil forward of the separation point.
Although the experimental and theoretical pressure distri-
butions matched equally well for all the test data of reference
35, the degree of correspondence must be attributed, in part,
to a fortunate cancellation of errors since individual com-
ponents involved in the perturbation analysis (e. g., the
relation betwean w and dZ/dx, Cfl and the perturbation
velocity components, etc.) contain appreciable errors when
applied to such a thick airfoil. Although the corresponding
experimental values are not available for the pressures at
stations aft of the separation point, it is presumed from other
experimental data that the pressurw reach their maximum
negative value in the vicinity of the separation point and
return toward the free-stream value at stations farther aft
on the airfoil, rathsr than varying in the mmner indicated
by the calculated results.

Before leaving this topic, the following remarks should
be made concerning experirmmtalfactora which may affect
these conclusions. The first is that the authors of reference
35 do not consider the data for the turbukmt boundary
layer to be as reliable as that for the laminar boundary
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the airfoil surfaces The diilerences in bounclnry-layer
thiclmess are clearly evident in the interferograms shown
in figure 40. The second stems from the fact that tho tests
were conducted with a 12-percent-thick airfoil. Compari-
sons of theory and experiment for such thick airfoils not
only strain the small-disturbance assumptions of the theory
but also emphasize unduly such featurea of the flow as the
curvature of the shock wave and boundmy-layer separation
which are disregarded completely in the theory. The third
is concerned with the fact that results of a recent flight
investigation by Harrin (ref. 37) have shown that, at Iioy-
nolds numbers of the order of 20,000,000, there is very
little difference in pressure distribution with laminar and
turbulent boundary layers. In particular, it is found that
the Atype shock and krge region of separated flow commonly
associated with laminar boundary layers do not occur. ~
this rwult is substantiated by further experiments, it will
be of partictiar significance in work such as the prcsont
where some assumption has to be made about the nature
of the shock system, and the assumption that the shock
wave is a single wave leads to the grenteat simplification.

The principal discrepancy between calculated pressure
distributions and those measured with a turbulent boundary
layer stems from the fact that the shock wave meets the
airfoil surface at a station farther forward than cfdcdohxl.
The interferograms of figure 40 show that n substrmtial
portion of the forward shift is due to a pronounced curvature
of the shock wave near the airfoil. This suggwts a compari-
son of the calculated shock positions with not only the
positions observed at the airfoil surface but also at some
distance, say a half chord length, away from the airfoil.
The results of such a comparison with the data for turbulent
boundary layers given in reference 35 me showmin figure 42.
It can be seen that the calculated shock positions vary with
Mo in a manner which parallels the experimental results at
z/c=o.5 but not those at the airfoil surface. It is almost
certain that the detade of this phenomenon are greatly
influenced by separation and by interaction of the shock
wave and boundary layer, and are, hence, beyond the roach
of sepmation-tiee potential theory for transonic flow.
Since the pressuregradients and shock strengti incream with
airfoil thickn~, it might be presumed that these eifects would
be greater for thick airfoils than for thin airfoils. An indi-
wttionof such a trend is furnished by tie prwsure-distibution
data of GMmrt (ref. 38) for NACA 0006, 0009, 0012, 0016,
and 0018 airfoils. Figure 43 shows a plot of the variation
with $0of the shock position at the surface of mch of these
airfoils. H the shock positions were changing in accord
with the similarity rules of transonic flow theory, them
results would all fall on a single curve. It can be seen,
however, that this is not the mse and that the shock moves
rearward across the chord at a slower rate for the thick
airfoils than for the thin ones. It appears, therefore, that at

best, the calculated shock positions will only agree with those

found qmrimentally for very thin airfoik.

JReml* we alsogivenfn rafemm W 8Mm@ not for a Maob number of 0S$, ta whlab
tba lmmfary fager b made trmbnlantby a wfre stmtdmd emcss tbe test Won one ohord
Iangthabmdoftbal m.dfngodge. Whrmtflwrasafts areplottdfn tbofomahomklflguro
S9,they M abouthaffwayfmtv?-wmthedodatedrmdtaand tbcd.oobW With the half
model monntedonaplate.
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It is apparent that changes in the shock position will be

accompanied, in many cases., by substantial changes in the

pressure drag of the airfoil. In particular, the forward shift

of the shock noted for the thick airfoils will diminish the

region of high negative pressures. on the rear of the airfoil,

thereby decreasing the drag. These efFects will, of course,

be zero until the critical Mach number is exceeded, will

increase as the shock moves across the airfoil, and may

diminish somewhat again as sonic free-stream velocity is

approached, since the actual, as well as calculated, shock

position then approaches the trailing edge. These effects

would probably alter the curve for the pressure drag of a

thick airfoil so that it would appear somewhat like that

illustrated in figure 44.

.

/4
M.

FIGUREI44.-Presumed drag results for a tbiok airfofL

CONCLUDING REMARKS

The foregoing results are encouragtig in that they show

that the introduction of a small number of rough, although

reasonable, assumptions leads to a relatively simple method

o

c

X]c

(a) Theory.

for the calculation of pressure distributions on thin circulm-

arc airfoils at all Mach numbers up to unity. Perhaps tlm

most important aspect of the present work is the recognition

of the quadratic nature of the integral equation and the

retention of this feature in the iteration solution. With the

knowledge that acceptable results can be obtained without

excessive effort, it appears worthwhile to re-examine tho

approximate solution of the equations with an eye toward

improvement, or elimination, of the simplifying assumptions,

Probably one of the weakest elements of the present method

is the velocity-distribution function introduced in equation

(63). This particular function is used to detemaine the

entire flow field but, actually, only insures that the velocity

and velocity gradient have the correct value at the airfoil

surface and that the velocity diminishes toward zero at

infinity as 1P. As can be seen by comparing the ex~ori-

mental and calculated results shown in figure 45, this func-

tion succeeds reasonably well for circular-sxc airfoils, On

the other hand, such a simple function cannot be expected

to give good results for all airfoils. I?or instance, the present

tielocity-distribution function cannot be expected to provide

good results for aidoils having flat surfaces over a substantial

part of the chord (e. g., wedge airfoils, etc.) since it i@icatea

no attenuation with distance above an element of the airfoil

where the radius of curvature of the surface is inihita. Gull-

strand (ref. 22) has proposed a different velocity-distribution

function which satisfies one more known requirement, but

it has not been established as yet whether or not it is suffi-

ciently general to cover all interesting cases.

AMES AERONA~CAL LABORATORY

~ATION.U &msoRY Coma’mm B FOR AERONAUTICS

MOFFETT FIDLD, CALrF.,Nou. 19, 1953

0

(b) Experlmefit.
FIcmaE46.-Comparimn of theoretical and experimental lin~ of conetant C. around a 12-percen&thick ciroular-aro airfoil at a Maoh number of

0.SS. Experimental data ~om reference 35 for Reynolds ‘number of 00~,000. Turbulent boundary layer.
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PRINCIPAL SYMBOLS
. .

a
a.
a*

b

0,

q

a

cd

G

d
E

:
471
I
ii

L
1

M
Mm
M.
n
P
P
PO

B

rz

Ys
s
8
t
u.

u, v, w

%

F

G

speed of sound

speed of sound in the free strewg

critical speed of sound

function defined in equations (63) and (64)

pressure coefficient, ‘~” ‘ ,
b U02
2

ud)’n
(~/c)m OF

chord
d

section pressure drag coefficient, —
$ U:c

KJC-W3
(qcyls cd

pressure drag
function defined in equation (67)
function defined in equation (71)
function deilned in equations (72) and (73)
function defined in equations (76) and (77)
function defined in equations (67) and (58)
coefficient of nonlinear term of differential equation

for p (See eqs. (7), (17), (18), and (21).)
2iiL-1
width of element used in approximating the

chordwise velocity distribution
local Mach number
critical Mach number
free-stream Mach number
inward normal to surface enclosing B
arbitrary point z, y, z
static pressure
free-stream static pressure “ ~ ~ “
region of integration

%M’+(2)’
-JG-w+(v-n’+(-w
surface of shock wave

wing semispan

maximum thicknm of profile

free-stream velocity

perturbation velocity components parallel to

X, Y} z W=Sj respectiv~y”’

.

Carte&n velocity components on the two ddea of

a shock wave, with Z being .parallal to the flow

.. direction ahead of the shock

f–z . .

--Z-

Cartsian coordinates where z’ extends in the di-
rection of the free-stream velocity

x .
@
pz
ordinatc9 of wing proii.les

go ~

L
ratio of specific heats, for air T= 1.4

difference between values of quantity on the upper

and 10WW sides of the w plane

variables of integration corresponding to Z, jj, Z

_ 1—W2 . .. ... ~
Pww’

1—W

–uc-k(t/c)l’@
free-stream density of air

surface enclosing volume 1?

kUOt - ‘--—.
p’c

velocity potential
perturbation velocity potential

$P

subscripts

valuea ahead of shock wave
values behind shock wave
conditions associated with” the critical Mach

number . .

values given by linear th~ry ‘.’
leading edge .:. :

values on the lower surface o.fwing or wake
values at MO=l - :
values at arbi- pokt P --- -”
values along shock wave , , :

trailing edge

vahm on the upper surface of w%g or wake

vrduea at the wing surface ~” . .
.,.

. . . 247
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APPENDIX -E

DISCUSSION OF CERTAIN PROPERTIES OF THE QUADRATIC ITERATION METHOD

. . INTRODUCTION

“The present results are obtained using an iteration process
which dMera &cm that of previous workem in that the
quadratic nature of the integral equation is recognized and
retained throughout the analysis. This appendix is con-
cerned with ‘an, investigation of certain properties of the
two methods and a discussion of the applicability of each
method to transonic-flow problems. Certain other problems
will be avoided by confining attention to symmetrical non-
lifting wings titih su.fhcientlysmooth entries at leading and
trailing edges that there are no stagnation points.’ Methods
of handling stagnation points are disumed in references 39
and 40.

The fundamental relations for the following discussion,
equations (41) and (43), can be written in the following more
‘abbreviated form

Z=GL–1, - (s1)

(I32)

where .TIand 13refer to the integrals over R and S’ in equa-
tions (41) and (43), respectively, and ~~ is the linear-theory
solution given by equation (42). -h is ewident from the
derivation in the text, equations (B1) and (B2) are totalIy
equivalent since the latter is derived bm the former by
partial integration such that

033)

Since methods for inverting, or solving, nonlineax integral
equations such as equations (B1) and (B2) are not known,
the present analysis, in common with many previous analy-
ses, seeks an approximate so@tion by iteration. These
methods proceed, in gimeral,~-by substituting a known
function for ~ into the integnds, integrating, and solving the
rcaulting algebraic equation for a new approximation for ii,
which is in ~turn substituted into the integrals, ete. The
procedure employed in the present analysis differs from that
traditionally employed in that it is based on equation (B2)
rather than equation (B1 ). The most obvious diilerence

between the two procedures is that the algebraic equation to

solve for the new ~ is linear in th~ traditional analysis and

quadratic in the present analysis. Although solutions of

equations @l) and 032) must actually be identical, it is

shown in equations (91) through (94) that this is not always

the case for the -results indicated by a partially .completed

itaration calculation. Site tde Iin&r iteration method. is

accepted universally for purely ‘subschic floti, and by some

for mixed flows, it is important that we examine the relation

between the results of the two procedures in greater detail.

24a

SEIOOE-FREE FLOW

Shock-free flow will be considered first. The integrals 11

and 12 are then simply

(B4)

and will be designated II (Z’) and Is@’) to call attention to

the fact tiat they involve the square of Z?. The linear-theory

solution ~L has the form

~L=% 6) ~, ~)=@~ (B6)

where % is a known function. Both the linear and quadmtio
itaration procedures can be started by letting ?7= Oand desig-
nating this approximation by ~.

The results for succe.a6iveiteration steps using the limmr
iteration method are determined by solving

Zm+l‘~L—ll @#~) (B7)

In this .svay.w-eobtain.

c= o

~l=~L=&;

&=tiL-~l@’)=tiL-?~l(@) ‘al~+~?

m=tiL-I,~?=al;+%?+%?+oF4)
. . . . . . . . . . . . . . . . . . . . .. . . .

Z==5(Z.7”+OF”+9 . (m
n=l

where am=a=(Z, ~, Z) are functions of the wing geometry,
and ultimately therefore of %. This procedure has tho
interesting property that one and only one additional term
in the power series expansion for Z is determined in its iimd
form with each iteration step. That is ,

. ...”-
~x=ti%-l+a.~~+ O@+l) (B9)

Note that a single expression is obtained for all Mach num-
bers and thiclm- ratios, and that the magnitudes of these
parametax are reflected solely in the value for 7. The
principal question concerns the range of convergence of tho
series. It is evident that the series cannot continue to con-
verge as Mo approaches unity because 7 approached infinity,
but the precise bound on the radius of convergence is di.tlicult
to establish at this point.

.,
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The results for successive iteration steps using the quad-
ratic method are determined by solving,

(B1O)

Thus .,’,
,. ~.+l=l h 41 —2i’iL+I@n~

,.
=l&&z (ml)

where ~ -’ ,;:

Xn=2~L—IZ@,~
and ,.

Xx<l

if Z.+l is to remain real. The minus sign is associated with
local velocities that are subsonic and the plus sign with those
th~t are supersonic. This result can be made more nearly
comparable with the power series representation provided
by the linear iteration method by expanding the radical of
equation (1311) under the assumption that lx.] <1, w-hereby
we”obtain

Oonsider iirst purely subsonic flow. Then su~~ive
iterations yield the following results

-.
%=0 .,-,,

iil=?7L+O@L~=~7+O@ .,1”.

, ..?...... . . . . . . . . . . . . . ...”...-.

+$jz.7=+o(7”+7 (1313)
n-l , . . .

where the an have the same vihms as in equation @8).
This series and that given by equation @8) are the same
since they can be made to agree to any arbitrary number of
terms. Thus the two methods lead to the same rwdt for
plldy subsonic flOTV. Whereas there is some doubt about
the range of convergence of eguation @8), it ie clear that
equation 0313) only applies to purely subsonic flow. This
is evident, tit of all, from the use of the minue sign in equa-
tion (B11). Moreover, since the series only converges for
lx~l<l, the l~wt value for ii which can be represented by
equation @13) is unity. Since ii equals unity’when tbe Iocd
velocity is sonic, this result can be interpreted as indicating
that equation (138) converges for purely subsonic flow, but
diverges for mixed flow.

There also exists a range in which the expression given in
equation (B12) applies using the plus sign for certain regions
of the flow field. The resulting series expansion for Z, how-
ever, does not lead to that given by equation (B8) or @13),
inmmuch as the tit term is independent of 7.

FLOW WITk SHOCK WAVEJ3

Although many of the general notions desqibed for.~ock-
....-

free fIOIV carry over into the analysis of.txansotiqflo.ms with
shock waves, certain changes must be .intro’ducd It is
clear, for instants, that the linear iteration mqtiod-dannot
be tied with the starting Z distribution. taken A zero or Z~,
because then equation (138) would be reprbducied.Wd no
discontinuities or shock waves would ever appear. On the
other hand, it might seem reasonable to suppose that a
successful iteration calcidation could be accomplished using
a starting z distribution containing a shock wave and esti-
mated to be close to the correct solution. This is, in fact,
what is done in the present analysis, but using the quadratic,
rather than linear, iteration method. Although, as shown
in the preceding section, there is no’ essential difference be-
tween the results of the two iteration methods in the sub-
critical range, the quadratic method emerges as definitely
superior when the free-strewn Mach number approaches
unity. Its decisive advantage lies in the fact that small
errors in the estimated ii distribution lead only to finite errors
in the calculated z as M. approachca unity, -whereas infinite

errors can result from the calculations performed by the

linear iteration ”method. The means by which small errors

can be magniiied in the linear iteration process can be seen

by examining equation (B1) together with the definition of

ii and ~@

Thus equation (B1) can be rewritten as follows: ‘

., ~=u&— 1,
w-here

~=~ 1,
.,

Now, as M. approached unity, u. remains $.nite.but u& ap-
proach= -infinity. The hwgeat vah.wa-of .u&are-attained on
the airfoil surface where UL approaches infinity as l/#1 in
two-dimensional flow and in ~ in three-dimensional flow.
This means, in the linear iteration method, that the desired ‘
solution u must be detmmined from the small diilerence be-
tween two large numbars. Since ~1 is only evaluated ap-
proximately in an iteration method by substituting a function
for u which diffem from the exact function by a finite amount,
it is apparent that very large or inil.niteerrors may result as
M. approaches unity. On the other hand, equation (B2),
which is used in the quadratic iteration method, can be
rewritten as follows:

,,

where

Now in this case the term containing% becoma indefinitely
small compared with U2 as the Mach number approaches
unity, and only finite errors remdt when an approximation
is substituted for u in 12.
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